Properties

Label 2-187200-1.1-c1-0-189
Degree $2$
Conductor $187200$
Sign $1$
Analytic cond. $1494.79$
Root an. cond. $38.6626$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s − 4·11-s + 13-s − 6·17-s + 8·23-s + 6·29-s + 4·31-s − 2·37-s + 10·41-s + 4·43-s + 8·47-s + 9·49-s + 2·53-s − 12·59-s + 2·61-s + 16·67-s − 8·71-s + 6·73-s + 16·77-s + 16·79-s + 4·83-s + 2·89-s − 4·91-s − 2·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  − 1.51·7-s − 1.20·11-s + 0.277·13-s − 1.45·17-s + 1.66·23-s + 1.11·29-s + 0.718·31-s − 0.328·37-s + 1.56·41-s + 0.609·43-s + 1.16·47-s + 9/7·49-s + 0.274·53-s − 1.56·59-s + 0.256·61-s + 1.95·67-s − 0.949·71-s + 0.702·73-s + 1.82·77-s + 1.80·79-s + 0.439·83-s + 0.211·89-s − 0.419·91-s − 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 187200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 187200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(187200\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(1494.79\)
Root analytic conductor: \(38.6626\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 187200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.186684000\)
\(L(\frac12)\) \(\approx\) \(2.186684000\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
13 \( 1 - T \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 16 T + p T^{2} \) 1.67.aq
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.92609491993775, −12.86751361197352, −12.37340001667976, −11.76343137925251, −11.01898680765039, −10.76849903379840, −10.43192825680109, −9.707653910279331, −9.409811863225260, −8.807106416716624, −8.551868543138245, −7.784662758067021, −7.247923011493089, −6.876343526055751, −6.232805321382046, −6.047894743618513, −5.266260839044361, −4.689411379864849, −4.327317577193479, −3.428691505078544, −3.109327857709511, −2.473044476237563, −2.142668493168199, −0.7632767976873249, −0.6058238944390383, 0.6058238944390383, 0.7632767976873249, 2.142668493168199, 2.473044476237563, 3.109327857709511, 3.428691505078544, 4.327317577193479, 4.689411379864849, 5.266260839044361, 6.047894743618513, 6.232805321382046, 6.876343526055751, 7.247923011493089, 7.784662758067021, 8.551868543138245, 8.807106416716624, 9.409811863225260, 9.707653910279331, 10.43192825680109, 10.76849903379840, 11.01898680765039, 11.76343137925251, 12.37340001667976, 12.86751361197352, 12.92609491993775

Graph of the $Z$-function along the critical line