Properties

Label 2-187200-1.1-c1-0-367
Degree $2$
Conductor $187200$
Sign $-1$
Analytic cond. $1494.79$
Root an. cond. $38.6626$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·7-s + 11-s − 13-s − 17-s − 2·19-s + 3·23-s − 2·29-s + 6·31-s + 11·37-s + 5·41-s − 4·43-s + 10·47-s + 2·49-s − 11·53-s − 8·59-s − 13·61-s − 12·67-s − 5·71-s − 10·73-s + 3·77-s + 3·79-s − 12·83-s + 15·89-s − 3·91-s − 17·97-s + 101-s + 103-s + ⋯
L(s)  = 1  + 1.13·7-s + 0.301·11-s − 0.277·13-s − 0.242·17-s − 0.458·19-s + 0.625·23-s − 0.371·29-s + 1.07·31-s + 1.80·37-s + 0.780·41-s − 0.609·43-s + 1.45·47-s + 2/7·49-s − 1.51·53-s − 1.04·59-s − 1.66·61-s − 1.46·67-s − 0.593·71-s − 1.17·73-s + 0.341·77-s + 0.337·79-s − 1.31·83-s + 1.58·89-s − 0.314·91-s − 1.72·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 187200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 187200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(187200\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(1494.79\)
Root analytic conductor: \(38.6626\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 187200,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
13 \( 1 + T \)
good7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 - T + p T^{2} \) 1.11.ab
17 \( 1 + T + p T^{2} \) 1.17.b
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 - 11 T + p T^{2} \) 1.37.al
41 \( 1 - 5 T + p T^{2} \) 1.41.af
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 + 11 T + p T^{2} \) 1.53.l
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + 13 T + p T^{2} \) 1.61.n
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 3 T + p T^{2} \) 1.79.ad
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 15 T + p T^{2} \) 1.89.ap
97 \( 1 + 17 T + p T^{2} \) 1.97.r
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.52594599048516, −12.81637751989468, −12.41470006481212, −11.91634584586882, −11.42471842085222, −11.03872275406025, −10.67890431320966, −10.09440734304527, −9.497927591678818, −9.049927840341982, −8.669398239266705, −7.916677416299414, −7.780887353746188, −7.190394188844279, −6.581268903488981, −5.951229201995170, −5.719369797441688, −4.724819842083449, −4.554683948048631, −4.226662390902055, −3.197892808690672, −2.819629835644293, −2.092625973264109, −1.493978259323816, −0.9500097860110219, 0, 0.9500097860110219, 1.493978259323816, 2.092625973264109, 2.819629835644293, 3.197892808690672, 4.226662390902055, 4.554683948048631, 4.724819842083449, 5.719369797441688, 5.951229201995170, 6.581268903488981, 7.190394188844279, 7.780887353746188, 7.916677416299414, 8.669398239266705, 9.049927840341982, 9.497927591678818, 10.09440734304527, 10.67890431320966, 11.03872275406025, 11.42471842085222, 11.91634584586882, 12.41470006481212, 12.81637751989468, 13.52594599048516

Graph of the $Z$-function along the critical line