Properties

Label 2-187200-1.1-c1-0-429
Degree $2$
Conductor $187200$
Sign $1$
Analytic cond. $1494.79$
Root an. cond. $38.6626$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7-s − 3·11-s + 13-s − 3·17-s + 4·19-s − 9·23-s − 6·29-s + 2·31-s − 37-s + 3·41-s + 2·43-s − 6·47-s − 6·49-s − 9·53-s − 12·59-s − 5·61-s − 4·67-s − 9·71-s − 14·73-s − 3·77-s − 7·79-s − 15·89-s + 91-s − 5·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  + 0.377·7-s − 0.904·11-s + 0.277·13-s − 0.727·17-s + 0.917·19-s − 1.87·23-s − 1.11·29-s + 0.359·31-s − 0.164·37-s + 0.468·41-s + 0.304·43-s − 0.875·47-s − 6/7·49-s − 1.23·53-s − 1.56·59-s − 0.640·61-s − 0.488·67-s − 1.06·71-s − 1.63·73-s − 0.341·77-s − 0.787·79-s − 1.58·89-s + 0.104·91-s − 0.507·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 187200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 187200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(187200\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(1494.79\)
Root analytic conductor: \(38.6626\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 187200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
13 \( 1 - T \)
good7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 + 3 T + p T^{2} \) 1.11.d
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 9 T + p T^{2} \) 1.23.j
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + T + p T^{2} \) 1.37.b
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 9 T + p T^{2} \) 1.71.j
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 7 T + p T^{2} \) 1.79.h
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 + 5 T + p T^{2} \) 1.97.f
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.63643200759288, −13.15564244738941, −12.67198083400246, −12.20540010059097, −11.59974813356758, −11.33702786002824, −10.74273559644931, −10.38284545208021, −9.756027488492784, −9.420408284739267, −8.858196121218871, −8.158646225498224, −7.938645747346069, −7.479770487127216, −6.906815280062250, −6.189828426582956, −5.841284995826144, −5.356131257029928, −4.650840480934249, −4.326475252216724, −3.663949650289586, −2.962065698049353, −2.571865533111775, −1.606978955167296, −1.493967282184031, 0, 0, 1.493967282184031, 1.606978955167296, 2.571865533111775, 2.962065698049353, 3.663949650289586, 4.326475252216724, 4.650840480934249, 5.356131257029928, 5.841284995826144, 6.189828426582956, 6.906815280062250, 7.479770487127216, 7.938645747346069, 8.158646225498224, 8.858196121218871, 9.420408284739267, 9.756027488492784, 10.38284545208021, 10.74273559644931, 11.33702786002824, 11.59974813356758, 12.20540010059097, 12.67198083400246, 13.15564244738941, 13.63643200759288

Graph of the $Z$-function along the critical line