Properties

Label 2-18450-1.1-c1-0-29
Degree $2$
Conductor $18450$
Sign $-1$
Analytic cond. $147.323$
Root an. cond. $12.1377$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 2·7-s − 8-s + 6·11-s + 13-s + 2·14-s + 16-s + 3·17-s + 5·19-s − 6·22-s − 6·23-s − 26-s − 2·28-s − 31-s − 32-s − 3·34-s − 2·37-s − 5·38-s + 41-s − 8·43-s + 6·44-s + 6·46-s − 12·47-s − 3·49-s + 52-s + 6·53-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.755·7-s − 0.353·8-s + 1.80·11-s + 0.277·13-s + 0.534·14-s + 1/4·16-s + 0.727·17-s + 1.14·19-s − 1.27·22-s − 1.25·23-s − 0.196·26-s − 0.377·28-s − 0.179·31-s − 0.176·32-s − 0.514·34-s − 0.328·37-s − 0.811·38-s + 0.156·41-s − 1.21·43-s + 0.904·44-s + 0.884·46-s − 1.75·47-s − 3/7·49-s + 0.138·52-s + 0.824·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 18450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 18450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(18450\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 41\)
Sign: $-1$
Analytic conductor: \(147.323\)
Root analytic conductor: \(12.1377\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 18450,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
41 \( 1 - T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 + 2 T + p T^{2} \) 1.37.c
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 13 T + p T^{2} \) 1.67.an
71 \( 1 + 15 T + p T^{2} \) 1.71.p
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 3 T + p T^{2} \) 1.83.ad
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.29694658735132, −15.67507757734681, −14.94970375680404, −14.42570885794697, −13.96032876948664, −13.34071995659100, −12.57702017018560, −12.01401407528031, −11.63663337409932, −11.16267972250649, −10.12174156671119, −9.873847508166352, −9.413810033586018, −8.763906230129104, −8.194265856469268, −7.514880053616244, −6.793840254708567, −6.430144089947220, −5.795772921463568, −5.036746108120240, −3.905271520074007, −3.587527090102197, −2.815963163566295, −1.669006628186444, −1.171549246466970, 0, 1.171549246466970, 1.669006628186444, 2.815963163566295, 3.587527090102197, 3.905271520074007, 5.036746108120240, 5.795772921463568, 6.430144089947220, 6.793840254708567, 7.514880053616244, 8.194265856469268, 8.763906230129104, 9.413810033586018, 9.873847508166352, 10.12174156671119, 11.16267972250649, 11.63663337409932, 12.01401407528031, 12.57702017018560, 13.34071995659100, 13.96032876948664, 14.42570885794697, 14.94970375680404, 15.67507757734681, 16.29694658735132

Graph of the $Z$-function along the critical line