Properties

Label 2-178752-1.1-c1-0-142
Degree $2$
Conductor $178752$
Sign $1$
Analytic cond. $1427.34$
Root an. cond. $37.7801$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s + 9-s + 5·11-s + 4·13-s − 15-s + 3·17-s + 19-s − 4·25-s + 27-s + 4·29-s + 2·31-s + 5·33-s − 4·37-s + 4·39-s + 4·41-s + 5·43-s − 45-s + 7·47-s + 3·51-s + 2·53-s − 5·55-s + 57-s − 10·59-s + 15·61-s − 4·65-s + 14·67-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s + 1/3·9-s + 1.50·11-s + 1.10·13-s − 0.258·15-s + 0.727·17-s + 0.229·19-s − 4/5·25-s + 0.192·27-s + 0.742·29-s + 0.359·31-s + 0.870·33-s − 0.657·37-s + 0.640·39-s + 0.624·41-s + 0.762·43-s − 0.149·45-s + 1.02·47-s + 0.420·51-s + 0.274·53-s − 0.674·55-s + 0.132·57-s − 1.30·59-s + 1.92·61-s − 0.496·65-s + 1.71·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 178752 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 178752 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(178752\)    =    \(2^{6} \cdot 3 \cdot 7^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(1427.34\)
Root analytic conductor: \(37.7801\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 178752,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.806984919\)
\(L(\frac12)\) \(\approx\) \(4.806984919\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 \)
19 \( 1 - T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 - 5 T + p T^{2} \) 1.11.af
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 - 5 T + p T^{2} \) 1.43.af
47 \( 1 - 7 T + p T^{2} \) 1.47.ah
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 - 15 T + p T^{2} \) 1.61.ap
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 - 2 T + p T^{2} \) 1.71.ac
73 \( 1 - 3 T + p T^{2} \) 1.73.ad
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 4 T + p T^{2} \) 1.97.e
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.25528317376328, −12.57843159177353, −12.26669765063541, −11.76521600549929, −11.33542663166894, −10.90916048720326, −10.23893538915688, −9.798517684086011, −9.283039997445805, −8.897658654631538, −8.277922522249362, −8.116605387802151, −7.330619861339408, −6.965163942340555, −6.400216765687682, −5.882948054095060, −5.404473327213684, −4.555998509072018, −3.954796475999472, −3.828621545142971, −3.193376419970365, −2.544726061271224, −1.771073539807676, −1.159797567955047, −0.6892218160771766, 0.6892218160771766, 1.159797567955047, 1.771073539807676, 2.544726061271224, 3.193376419970365, 3.828621545142971, 3.954796475999472, 4.555998509072018, 5.404473327213684, 5.882948054095060, 6.400216765687682, 6.965163942340555, 7.330619861339408, 8.116605387802151, 8.277922522249362, 8.897658654631538, 9.283039997445805, 9.798517684086011, 10.23893538915688, 10.90916048720326, 11.33542663166894, 11.76521600549929, 12.26669765063541, 12.57843159177353, 13.25528317376328

Graph of the $Z$-function along the critical line