Properties

Label 2-178752-1.1-c1-0-269
Degree $2$
Conductor $178752$
Sign $1$
Analytic cond. $1427.34$
Root an. cond. $37.7801$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s + 9-s − 4·11-s − 15-s − 3·17-s − 19-s + 3·23-s − 4·25-s − 27-s − 6·31-s + 4·33-s − 11·43-s + 45-s + 3·51-s − 4·53-s − 4·55-s + 57-s − 6·59-s + 10·61-s + 2·67-s − 3·69-s − 4·71-s − 2·73-s + 4·75-s + 6·79-s + 81-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s + 1/3·9-s − 1.20·11-s − 0.258·15-s − 0.727·17-s − 0.229·19-s + 0.625·23-s − 4/5·25-s − 0.192·27-s − 1.07·31-s + 0.696·33-s − 1.67·43-s + 0.149·45-s + 0.420·51-s − 0.549·53-s − 0.539·55-s + 0.132·57-s − 0.781·59-s + 1.28·61-s + 0.244·67-s − 0.361·69-s − 0.474·71-s − 0.234·73-s + 0.461·75-s + 0.675·79-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 178752 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 178752 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(178752\)    =    \(2^{6} \cdot 3 \cdot 7^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(1427.34\)
Root analytic conductor: \(37.7801\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 178752,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
19 \( 1 + T \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + 3 T + p T^{2} \) 1.17.d
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 + p T^{2} \) 1.37.a
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 11 T + p T^{2} \) 1.43.l
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 + 7 T + p T^{2} \) 1.83.h
89 \( 1 + 16 T + p T^{2} \) 1.89.q
97 \( 1 + 16 T + p T^{2} \) 1.97.q
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.56628184508781, −13.06393699204413, −12.82960371337922, −12.29611145393084, −11.67773053330776, −11.16969149140905, −10.91374645107986, −10.34068851509342, −9.925901149532192, −9.475880053619030, −8.915130441422813, −8.323698922559483, −7.921873827569910, −7.289059533312598, −6.832644443672682, −6.360311918680450, −5.768618014465085, −5.195079604905753, −5.079221916311332, −4.234201035400015, −3.777313190113177, −2.948277408006130, −2.482296130496233, −1.796419256787900, −1.263283306126657, 0, 0, 1.263283306126657, 1.796419256787900, 2.482296130496233, 2.948277408006130, 3.777313190113177, 4.234201035400015, 5.079221916311332, 5.195079604905753, 5.768618014465085, 6.360311918680450, 6.832644443672682, 7.289059533312598, 7.921873827569910, 8.323698922559483, 8.915130441422813, 9.475880053619030, 9.925901149532192, 10.34068851509342, 10.91374645107986, 11.16969149140905, 11.67773053330776, 12.29611145393084, 12.82960371337922, 13.06393699204413, 13.56628184508781

Graph of the $Z$-function along the critical line