Properties

Label 2-17136-1.1-c1-0-20
Degree $2$
Conductor $17136$
Sign $-1$
Analytic cond. $136.831$
Root an. cond. $11.6975$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·5-s − 7-s − 11-s + 3·13-s − 17-s + 6·19-s − 2·23-s + 4·25-s − 6·29-s + 3·35-s + 3·37-s − 11·43-s + 49-s + 9·53-s + 3·55-s − 4·59-s − 14·61-s − 9·65-s + 7·67-s + 12·71-s − 73-s + 77-s + 5·79-s + 3·83-s + 3·85-s + 89-s − 3·91-s + ⋯
L(s)  = 1  − 1.34·5-s − 0.377·7-s − 0.301·11-s + 0.832·13-s − 0.242·17-s + 1.37·19-s − 0.417·23-s + 4/5·25-s − 1.11·29-s + 0.507·35-s + 0.493·37-s − 1.67·43-s + 1/7·49-s + 1.23·53-s + 0.404·55-s − 0.520·59-s − 1.79·61-s − 1.11·65-s + 0.855·67-s + 1.42·71-s − 0.117·73-s + 0.113·77-s + 0.562·79-s + 0.329·83-s + 0.325·85-s + 0.105·89-s − 0.314·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 17136 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17136 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(17136\)    =    \(2^{4} \cdot 3^{2} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(136.831\)
Root analytic conductor: \(11.6975\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 17136,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
17 \( 1 + T \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
11 \( 1 + T + p T^{2} \) 1.11.b
13 \( 1 - 3 T + p T^{2} \) 1.13.ad
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 11 T + p T^{2} \) 1.43.l
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 - 7 T + p T^{2} \) 1.67.ah
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + T + p T^{2} \) 1.73.b
79 \( 1 - 5 T + p T^{2} \) 1.79.af
83 \( 1 - 3 T + p T^{2} \) 1.83.ad
89 \( 1 - T + p T^{2} \) 1.89.ab
97 \( 1 + 13 T + p T^{2} \) 1.97.n
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.03072504754709, −15.61215787336212, −15.22862051138629, −14.64638411704277, −13.75795899612453, −13.49510942203292, −12.78428444531137, −12.15818069509999, −11.69394480852889, −11.20427557402586, −10.71059849276735, −9.906934633829579, −9.378004033368456, −8.667588510610227, −8.074524889984497, −7.605712140431646, −7.053416892479365, −6.323705229953880, −5.609480018910547, −4.922451315684561, −4.129065603611591, −3.529732516503724, −3.119902147691906, −1.999065856410795, −0.9332406389424395, 0, 0.9332406389424395, 1.999065856410795, 3.119902147691906, 3.529732516503724, 4.129065603611591, 4.922451315684561, 5.609480018910547, 6.323705229953880, 7.053416892479365, 7.605712140431646, 8.074524889984497, 8.667588510610227, 9.378004033368456, 9.906934633829579, 10.71059849276735, 11.20427557402586, 11.69394480852889, 12.15818069509999, 12.78428444531137, 13.49510942203292, 13.75795899612453, 14.64638411704277, 15.22862051138629, 15.61215787336212, 16.03072504754709

Graph of the $Z$-function along the critical line