| L(s)  = 1  |   − 2-s     + 4-s   + 5-s       − 8-s     − 10-s   + 11-s     + 6·13-s       + 16-s   + 2·17-s     − 19-s   + 20-s     − 22-s   + 23-s     − 4·25-s   − 6·26-s       − 4·29-s       − 32-s     − 2·34-s       + 8·37-s   + 38-s     − 40-s   − 12·41-s     − 7·43-s   + 44-s     − 46-s   − 9·47-s       + 4·50-s  + ⋯ | 
 
| L(s)  = 1  |   − 0.707·2-s     + 1/2·4-s   + 0.447·5-s       − 0.353·8-s     − 0.316·10-s   + 0.301·11-s     + 1.66·13-s       + 1/4·16-s   + 0.485·17-s     − 0.229·19-s   + 0.223·20-s     − 0.213·22-s   + 0.208·23-s     − 4/5·25-s   − 1.17·26-s       − 0.742·29-s       − 0.176·32-s     − 0.342·34-s       + 1.31·37-s   + 0.162·38-s     − 0.158·40-s   − 1.87·41-s     − 1.06·43-s   + 0.150·44-s     − 0.147·46-s   − 1.31·47-s       + 0.565·50-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 16758 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16758 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(1)\)  | 
            \(=\) | 
             \(0\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(=\) | 
      
       \(0\)  | 
    
    
        
      |  \(L(\frac{3}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 |  \( 1 + T \)  |    | 
 | 3 |  \( 1 \)  |    | 
 | 7 |  \( 1 \)  |    | 
 | 19 |  \( 1 + T \)  |    | 
| good | 5 |  \( 1 - T + p T^{2} \)  |  1.5.ab  | 
 | 11 |  \( 1 - T + p T^{2} \)  |  1.11.ab  | 
 | 13 |  \( 1 - 6 T + p T^{2} \)  |  1.13.ag  | 
 | 17 |  \( 1 - 2 T + p T^{2} \)  |  1.17.ac  | 
 | 23 |  \( 1 - T + p T^{2} \)  |  1.23.ab  | 
 | 29 |  \( 1 + 4 T + p T^{2} \)  |  1.29.e  | 
 | 31 |  \( 1 + p T^{2} \)  |  1.31.a  | 
 | 37 |  \( 1 - 8 T + p T^{2} \)  |  1.37.ai  | 
 | 41 |  \( 1 + 12 T + p T^{2} \)  |  1.41.m  | 
 | 43 |  \( 1 + 7 T + p T^{2} \)  |  1.43.h  | 
 | 47 |  \( 1 + 9 T + p T^{2} \)  |  1.47.j  | 
 | 53 |  \( 1 + p T^{2} \)  |  1.53.a  | 
 | 59 |  \( 1 + 2 T + p T^{2} \)  |  1.59.c  | 
 | 61 |  \( 1 - 3 T + p T^{2} \)  |  1.61.ad  | 
 | 67 |  \( 1 + 2 T + p T^{2} \)  |  1.67.c  | 
 | 71 |  \( 1 + 2 T + p T^{2} \)  |  1.71.c  | 
 | 73 |  \( 1 + T + p T^{2} \)  |  1.73.b  | 
 | 79 |  \( 1 - 12 T + p T^{2} \)  |  1.79.am  | 
 | 83 |  \( 1 + T + p T^{2} \)  |  1.83.b  | 
 | 89 |  \( 1 + 18 T + p T^{2} \)  |  1.89.s  | 
 | 97 |  \( 1 + 4 T + p T^{2} \)  |  1.97.e  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−16.37758682528634, −15.71422681151811, −15.07349854964612, −14.73476545576717, −13.82743517594786, −13.44134752552782, −12.97576559695207, −12.15641034576415, −11.51032352410041, −11.17446404351741, −10.49199899418299, −9.895630046628661, −9.427344435654017, −8.800924634398014, −8.164685842010621, −7.840203829050026, −6.724779237227708, −6.514167006817730, −5.734311033024023, −5.208070389060467, −4.088755997700724, −3.541099564268997, −2.746571170275859, −1.669800222340834, −1.305047778748699, 0, 
1.305047778748699, 1.669800222340834, 2.746571170275859, 3.541099564268997, 4.088755997700724, 5.208070389060467, 5.734311033024023, 6.514167006817730, 6.724779237227708, 7.840203829050026, 8.164685842010621, 8.800924634398014, 9.427344435654017, 9.895630046628661, 10.49199899418299, 11.17446404351741, 11.51032352410041, 12.15641034576415, 12.97576559695207, 13.44134752552782, 13.82743517594786, 14.73476545576717, 15.07349854964612, 15.71422681151811, 16.37758682528634