Properties

Label 2-16758-1.1-c1-0-34
Degree $2$
Conductor $16758$
Sign $-1$
Analytic cond. $133.813$
Root an. cond. $11.5677$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 5-s − 8-s − 10-s + 11-s + 6·13-s + 16-s + 2·17-s − 19-s + 20-s − 22-s + 23-s − 4·25-s − 6·26-s − 4·29-s − 32-s − 2·34-s + 8·37-s + 38-s − 40-s − 12·41-s − 7·43-s + 44-s − 46-s − 9·47-s + 4·50-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.447·5-s − 0.353·8-s − 0.316·10-s + 0.301·11-s + 1.66·13-s + 1/4·16-s + 0.485·17-s − 0.229·19-s + 0.223·20-s − 0.213·22-s + 0.208·23-s − 4/5·25-s − 1.17·26-s − 0.742·29-s − 0.176·32-s − 0.342·34-s + 1.31·37-s + 0.162·38-s − 0.158·40-s − 1.87·41-s − 1.06·43-s + 0.150·44-s − 0.147·46-s − 1.31·47-s + 0.565·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 16758 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16758 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(16758\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(133.813\)
Root analytic conductor: \(11.5677\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 16758,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 \)
19 \( 1 + T \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
11 \( 1 - T + p T^{2} \) 1.11.ab
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 2 T + p T^{2} \) 1.59.c
61 \( 1 - 3 T + p T^{2} \) 1.61.ad
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 + T + p T^{2} \) 1.73.b
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 + T + p T^{2} \) 1.83.b
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 + 4 T + p T^{2} \) 1.97.e
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.37758682528634, −15.71422681151811, −15.07349854964612, −14.73476545576717, −13.82743517594786, −13.44134752552782, −12.97576559695207, −12.15641034576415, −11.51032352410041, −11.17446404351741, −10.49199899418299, −9.895630046628661, −9.427344435654017, −8.800924634398014, −8.164685842010621, −7.840203829050026, −6.724779237227708, −6.514167006817730, −5.734311033024023, −5.208070389060467, −4.088755997700724, −3.541099564268997, −2.746571170275859, −1.669800222340834, −1.305047778748699, 0, 1.305047778748699, 1.669800222340834, 2.746571170275859, 3.541099564268997, 4.088755997700724, 5.208070389060467, 5.734311033024023, 6.514167006817730, 6.724779237227708, 7.840203829050026, 8.164685842010621, 8.800924634398014, 9.427344435654017, 9.895630046628661, 10.49199899418299, 11.17446404351741, 11.51032352410041, 12.15641034576415, 12.97576559695207, 13.44134752552782, 13.82743517594786, 14.73476545576717, 15.07349854964612, 15.71422681151811, 16.37758682528634

Graph of the $Z$-function along the critical line