Properties

Label 2-164934-1.1-c1-0-3
Degree $2$
Conductor $164934$
Sign $1$
Analytic cond. $1317.00$
Root an. cond. $36.2905$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 2·5-s + 8-s + 2·10-s − 11-s − 6·13-s + 16-s − 17-s − 4·19-s + 2·20-s − 22-s − 25-s − 6·26-s − 2·29-s + 32-s − 34-s − 10·37-s − 4·38-s + 2·40-s − 10·41-s − 4·43-s − 44-s + 4·47-s − 50-s − 6·52-s + 2·53-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.894·5-s + 0.353·8-s + 0.632·10-s − 0.301·11-s − 1.66·13-s + 1/4·16-s − 0.242·17-s − 0.917·19-s + 0.447·20-s − 0.213·22-s − 1/5·25-s − 1.17·26-s − 0.371·29-s + 0.176·32-s − 0.171·34-s − 1.64·37-s − 0.648·38-s + 0.316·40-s − 1.56·41-s − 0.609·43-s − 0.150·44-s + 0.583·47-s − 0.141·50-s − 0.832·52-s + 0.274·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 164934 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 164934 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(164934\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \cdot 17\)
Sign: $1$
Analytic conductor: \(1317.00\)
Root analytic conductor: \(36.2905\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 164934,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.759963704\)
\(L(\frac12)\) \(\approx\) \(1.759963704\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 \)
11 \( 1 + T \)
17 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
13 \( 1 + 6 T + p T^{2} \) 1.13.g
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.32460799602781, −12.78864499981090, −12.31153270193620, −12.06665360825886, −11.43592636248841, −10.80204812166889, −10.45531495326272, −9.870830376456817, −9.654201021415890, −8.996529387981873, −8.321288031019543, −7.989791480769254, −7.136960585479615, −6.869727366977123, −6.473332981132247, −5.662277027146104, −5.265680006929032, −5.042010409039246, −4.236467528233210, −3.820777760627915, −2.966147105954134, −2.537748294185569, −1.931783429940049, −1.588041239213915, −0.3018457310823397, 0.3018457310823397, 1.588041239213915, 1.931783429940049, 2.537748294185569, 2.966147105954134, 3.820777760627915, 4.236467528233210, 5.042010409039246, 5.265680006929032, 5.662277027146104, 6.473332981132247, 6.869727366977123, 7.136960585479615, 7.989791480769254, 8.321288031019543, 8.996529387981873, 9.654201021415890, 9.870830376456817, 10.45531495326272, 10.80204812166889, 11.43592636248841, 12.06665360825886, 12.31153270193620, 12.78864499981090, 13.32460799602781

Graph of the $Z$-function along the critical line