Properties

Label 2-162576-1.1-c1-0-17
Degree $2$
Conductor $162576$
Sign $-1$
Analytic cond. $1298.17$
Root an. cond. $36.0302$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 7-s + 3·11-s − 4·13-s + 2·17-s + 8·19-s − 25-s − 5·29-s − 6·31-s − 2·35-s − 4·37-s − 3·41-s − 43-s − 6·47-s − 6·49-s + 4·53-s − 6·55-s − 4·59-s + 8·65-s − 4·67-s − 8·71-s + 10·73-s + 3·77-s − 7·79-s − 5·83-s − 4·85-s + 7·89-s + ⋯
L(s)  = 1  − 0.894·5-s + 0.377·7-s + 0.904·11-s − 1.10·13-s + 0.485·17-s + 1.83·19-s − 1/5·25-s − 0.928·29-s − 1.07·31-s − 0.338·35-s − 0.657·37-s − 0.468·41-s − 0.152·43-s − 0.875·47-s − 6/7·49-s + 0.549·53-s − 0.809·55-s − 0.520·59-s + 0.992·65-s − 0.488·67-s − 0.949·71-s + 1.17·73-s + 0.341·77-s − 0.787·79-s − 0.548·83-s − 0.433·85-s + 0.741·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162576 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162576\)    =    \(2^{4} \cdot 3^{2} \cdot 1129\)
Sign: $-1$
Analytic conductor: \(1298.17\)
Root analytic conductor: \(36.0302\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 162576,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
1129 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 7 T + p T^{2} \) 1.79.h
83 \( 1 + 5 T + p T^{2} \) 1.83.f
89 \( 1 - 7 T + p T^{2} \) 1.89.ah
97 \( 1 - 13 T + p T^{2} \) 1.97.an
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.47153529176384, −13.02434443640374, −12.33270339259017, −12.02882716824258, −11.59386416246441, −11.38660473231954, −10.74058273677946, −10.03619431010350, −9.679403668704625, −9.251496150039577, −8.699404066748550, −8.094038189784622, −7.560575028817847, −7.315915644431775, −6.925162267197244, −6.060843559029096, −5.582336095374561, −4.972291533910814, −4.641018917738203, −3.863727492833799, −3.396915374366215, −3.086479027662256, −2.005003295602656, −1.605938389502623, −0.7625826165121010, 0, 0.7625826165121010, 1.605938389502623, 2.005003295602656, 3.086479027662256, 3.396915374366215, 3.863727492833799, 4.641018917738203, 4.972291533910814, 5.582336095374561, 6.060843559029096, 6.925162267197244, 7.315915644431775, 7.560575028817847, 8.094038189784622, 8.699404066748550, 9.251496150039577, 9.679403668704625, 10.03619431010350, 10.74058273677946, 11.38660473231954, 11.59386416246441, 12.02882716824258, 12.33270339259017, 13.02434443640374, 13.47153529176384

Graph of the $Z$-function along the critical line