Properties

Label 2-162288-1.1-c1-0-46
Degree $2$
Conductor $162288$
Sign $1$
Analytic cond. $1295.87$
Root an. cond. $35.9982$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 5·13-s + 7·17-s − 8·19-s + 23-s − 4·25-s + 10·29-s − 2·31-s + 4·37-s − 8·41-s + 12·43-s + 3·47-s + 9·53-s + 12·59-s + 12·61-s − 5·65-s − 7·67-s − 5·71-s + 73-s − 4·83-s + 7·85-s − 6·89-s − 8·95-s + 10·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  + 0.447·5-s − 1.38·13-s + 1.69·17-s − 1.83·19-s + 0.208·23-s − 4/5·25-s + 1.85·29-s − 0.359·31-s + 0.657·37-s − 1.24·41-s + 1.82·43-s + 0.437·47-s + 1.23·53-s + 1.56·59-s + 1.53·61-s − 0.620·65-s − 0.855·67-s − 0.593·71-s + 0.117·73-s − 0.439·83-s + 0.759·85-s − 0.635·89-s − 0.820·95-s + 1.01·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162288 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162288 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162288\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(1295.87\)
Root analytic conductor: \(35.9982\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 162288,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.448836225\)
\(L(\frac12)\) \(\approx\) \(2.448836225\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
23 \( 1 - T \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 5 T + p T^{2} \) 1.13.f
17 \( 1 - 7 T + p T^{2} \) 1.17.ah
19 \( 1 + 8 T + p T^{2} \) 1.19.i
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 12 T + p T^{2} \) 1.61.am
67 \( 1 + 7 T + p T^{2} \) 1.67.h
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 - T + p T^{2} \) 1.73.ab
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.14211579467333, −12.74802737758812, −12.39609254372569, −11.79813092300842, −11.60809932143298, −10.67860762819920, −10.27748008854051, −10.03496645989167, −9.606216790394671, −8.835123784540492, −8.549363984678649, −7.896627233440130, −7.458345935284868, −6.950897336943236, −6.379218426535618, −5.869451366529965, −5.352471446006107, −4.906496592816361, −4.182349836537026, −3.851791332662894, −2.914128679853562, −2.487693120005480, −2.020005885684135, −1.141978935372837, −0.4840794335730524, 0.4840794335730524, 1.141978935372837, 2.020005885684135, 2.487693120005480, 2.914128679853562, 3.851791332662894, 4.182349836537026, 4.906496592816361, 5.352471446006107, 5.869451366529965, 6.379218426535618, 6.950897336943236, 7.458345935284868, 7.896627233440130, 8.549363984678649, 8.835123784540492, 9.606216790394671, 10.03496645989167, 10.27748008854051, 10.67860762819920, 11.60809932143298, 11.79813092300842, 12.39609254372569, 12.74802737758812, 13.14211579467333

Graph of the $Z$-function along the critical line