Properties

Label 2-162240-1.1-c1-0-15
Degree $2$
Conductor $162240$
Sign $1$
Analytic cond. $1295.49$
Root an. cond. $35.9929$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s + 9-s + 15-s − 6·17-s − 4·19-s + 25-s − 27-s + 2·29-s − 2·37-s + 2·41-s − 4·43-s − 45-s + 4·47-s − 7·49-s + 6·51-s + 10·53-s + 4·57-s − 8·59-s + 2·61-s + 4·67-s − 12·71-s + 6·73-s − 75-s + 81-s + 16·83-s + 6·85-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s + 1/3·9-s + 0.258·15-s − 1.45·17-s − 0.917·19-s + 1/5·25-s − 0.192·27-s + 0.371·29-s − 0.328·37-s + 0.312·41-s − 0.609·43-s − 0.149·45-s + 0.583·47-s − 49-s + 0.840·51-s + 1.37·53-s + 0.529·57-s − 1.04·59-s + 0.256·61-s + 0.488·67-s − 1.42·71-s + 0.702·73-s − 0.115·75-s + 1/9·81-s + 1.75·83-s + 0.650·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162240\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(1295.49\)
Root analytic conductor: \(35.9929\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 162240,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7998427152\)
\(L(\frac12)\) \(\approx\) \(0.7998427152\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
13 \( 1 \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.22705227563026, −12.80250274496409, −12.21475571716731, −11.87365599216026, −11.33632705429509, −10.92558218138337, −10.50662700642573, −10.10320725055235, −9.368850531603748, −8.889540375233351, −8.536810565785303, −7.910234696166808, −7.404551825947852, −6.814885269526668, −6.438056392342374, −6.018625904808688, −5.281887651198447, −4.715150590723215, −4.399800724913978, −3.779159080949750, −3.202849278393593, −2.336219770030015, −1.974959307217695, −1.052440248475394, −0.3000909736046546, 0.3000909736046546, 1.052440248475394, 1.974959307217695, 2.336219770030015, 3.202849278393593, 3.779159080949750, 4.399800724913978, 4.715150590723215, 5.281887651198447, 6.018625904808688, 6.438056392342374, 6.814885269526668, 7.404551825947852, 7.910234696166808, 8.536810565785303, 8.889540375233351, 9.368850531603748, 10.10320725055235, 10.50662700642573, 10.92558218138337, 11.33632705429509, 11.87365599216026, 12.21475571716731, 12.80250274496409, 13.22705227563026

Graph of the $Z$-function along the critical line