Properties

Label 2-162240-1.1-c1-0-74
Degree $2$
Conductor $162240$
Sign $1$
Analytic cond. $1295.49$
Root an. cond. $35.9929$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s + 7-s + 9-s + 3·11-s + 15-s − 5·17-s + 2·19-s + 21-s + 3·23-s + 25-s + 27-s − 4·31-s + 3·33-s + 35-s + 37-s − 9·41-s + 2·43-s + 45-s + 8·47-s − 6·49-s − 5·51-s + 53-s + 3·55-s + 2·57-s − 4·59-s + 3·61-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s + 0.377·7-s + 1/3·9-s + 0.904·11-s + 0.258·15-s − 1.21·17-s + 0.458·19-s + 0.218·21-s + 0.625·23-s + 1/5·25-s + 0.192·27-s − 0.718·31-s + 0.522·33-s + 0.169·35-s + 0.164·37-s − 1.40·41-s + 0.304·43-s + 0.149·45-s + 1.16·47-s − 6/7·49-s − 0.700·51-s + 0.137·53-s + 0.404·55-s + 0.264·57-s − 0.520·59-s + 0.384·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162240\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(1295.49\)
Root analytic conductor: \(35.9929\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 162240,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.503816170\)
\(L(\frac12)\) \(\approx\) \(4.503816170\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 - T \)
13 \( 1 \)
good7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
17 \( 1 + 5 T + p T^{2} \) 1.17.f
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 + 9 T + p T^{2} \) 1.41.j
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - T + p T^{2} \) 1.53.ab
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 3 T + p T^{2} \) 1.61.ad
67 \( 1 - 16 T + p T^{2} \) 1.67.aq
71 \( 1 + 15 T + p T^{2} \) 1.71.p
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 15 T + p T^{2} \) 1.79.ap
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 - 5 T + p T^{2} \) 1.97.af
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.39288793502515, −12.80904276951690, −12.44311702614956, −11.77248908038133, −11.37715421375739, −10.88248609518023, −10.45792954404211, −9.724842448368674, −9.447121866801789, −8.842480612157628, −8.676682856056424, −7.992095835925530, −7.391462984850639, −6.965373730201746, −6.446608957120209, −6.017809783239204, −5.180411677262677, −4.858305134910856, −4.251816036753998, −3.560151980815126, −3.258526719889593, −2.205105275705152, −2.105374420190614, −1.275896451636024, −0.6105128843795583, 0.6105128843795583, 1.275896451636024, 2.105374420190614, 2.205105275705152, 3.258526719889593, 3.560151980815126, 4.251816036753998, 4.858305134910856, 5.180411677262677, 6.017809783239204, 6.446608957120209, 6.965373730201746, 7.391462984850639, 7.992095835925530, 8.676682856056424, 8.842480612157628, 9.447121866801789, 9.724842448368674, 10.45792954404211, 10.88248609518023, 11.37715421375739, 11.77248908038133, 12.44311702614956, 12.80904276951690, 13.39288793502515

Graph of the $Z$-function along the critical line