Properties

Label 2-159936-1.1-c1-0-171
Degree $2$
Conductor $159936$
Sign $-1$
Analytic cond. $1277.09$
Root an. cond. $35.7364$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·5-s + 9-s + 2·13-s − 2·15-s − 17-s − 25-s + 27-s − 2·29-s − 8·31-s + 6·37-s + 2·39-s + 6·41-s − 4·43-s − 2·45-s − 51-s − 14·53-s − 8·59-s + 14·61-s − 4·65-s − 4·67-s + 8·71-s − 10·73-s − 75-s + 8·79-s + 81-s − 16·83-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.894·5-s + 1/3·9-s + 0.554·13-s − 0.516·15-s − 0.242·17-s − 1/5·25-s + 0.192·27-s − 0.371·29-s − 1.43·31-s + 0.986·37-s + 0.320·39-s + 0.937·41-s − 0.609·43-s − 0.298·45-s − 0.140·51-s − 1.92·53-s − 1.04·59-s + 1.79·61-s − 0.496·65-s − 0.488·67-s + 0.949·71-s − 1.17·73-s − 0.115·75-s + 0.900·79-s + 1/9·81-s − 1.75·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 159936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 159936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(159936\)    =    \(2^{6} \cdot 3 \cdot 7^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(1277.09\)
Root analytic conductor: \(35.7364\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 159936,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 \)
17 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 14 T + p T^{2} \) 1.53.o
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.44075303984278, −13.05929143946068, −12.60279646208894, −12.18652256496166, −11.49128308283948, −11.09438899965437, −10.92506476515876, −10.08925100635532, −9.587474135508539, −9.215061476484033, −8.635036868540493, −8.144389167149080, −7.820919359403418, −7.243302437500224, −6.883706155904671, −6.088251564146884, −5.740989247776146, −4.966299602031423, −4.330220451641988, −4.027746135358983, −3.341354146472803, −3.036149937110192, −2.125862319242535, −1.660528975530520, −0.7862371393984659, 0, 0.7862371393984659, 1.660528975530520, 2.125862319242535, 3.036149937110192, 3.341354146472803, 4.027746135358983, 4.330220451641988, 4.966299602031423, 5.740989247776146, 6.088251564146884, 6.883706155904671, 7.243302437500224, 7.820919359403418, 8.144389167149080, 8.635036868540493, 9.215061476484033, 9.587474135508539, 10.08925100635532, 10.92506476515876, 11.09438899965437, 11.49128308283948, 12.18652256496166, 12.60279646208894, 13.05929143946068, 13.44075303984278

Graph of the $Z$-function along the critical line