Properties

Label 2-159600-1.1-c1-0-156
Degree $2$
Conductor $159600$
Sign $-1$
Analytic cond. $1274.41$
Root an. cond. $35.6989$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 7-s + 9-s + 5·11-s + 13-s + 3·17-s + 19-s − 21-s − 23-s + 27-s − 29-s + 2·31-s + 5·33-s − 4·37-s + 39-s − 5·41-s − 10·43-s − 6·47-s + 49-s + 3·51-s − 6·53-s + 57-s − 13·59-s − 3·61-s − 63-s + 15·67-s − 69-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.377·7-s + 1/3·9-s + 1.50·11-s + 0.277·13-s + 0.727·17-s + 0.229·19-s − 0.218·21-s − 0.208·23-s + 0.192·27-s − 0.185·29-s + 0.359·31-s + 0.870·33-s − 0.657·37-s + 0.160·39-s − 0.780·41-s − 1.52·43-s − 0.875·47-s + 1/7·49-s + 0.420·51-s − 0.824·53-s + 0.132·57-s − 1.69·59-s − 0.384·61-s − 0.125·63-s + 1.83·67-s − 0.120·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 159600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 159600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(159600\)    =    \(2^{4} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 19\)
Sign: $-1$
Analytic conductor: \(1274.41\)
Root analytic conductor: \(35.6989\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 159600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 + T \)
19 \( 1 - T \)
good11 \( 1 - 5 T + p T^{2} \) 1.11.af
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 + T + p T^{2} \) 1.29.b
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 13 T + p T^{2} \) 1.59.n
61 \( 1 + 3 T + p T^{2} \) 1.61.d
67 \( 1 - 15 T + p T^{2} \) 1.67.ap
71 \( 1 + 15 T + p T^{2} \) 1.71.p
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 - 5 T + p T^{2} \) 1.79.af
83 \( 1 + T + p T^{2} \) 1.83.b
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 + 4 T + p T^{2} \) 1.97.e
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.73342384417774, −12.98387231745891, −12.66205736449891, −12.04539775731020, −11.62621999698623, −11.36723760208353, −10.46325549592449, −10.10662292277912, −9.709870871815578, −9.106803601429708, −8.812741625043623, −8.287363455832070, −7.702909325838825, −7.221520415891038, −6.651607214068031, −6.225131357958950, −5.809095170345379, −4.848635077524331, −4.639698586561833, −3.742413732058131, −3.371606358347432, −3.112850025322140, −2.040365046451070, −1.593856878495549, −1.002577413094559, 0, 1.002577413094559, 1.593856878495549, 2.040365046451070, 3.112850025322140, 3.371606358347432, 3.742413732058131, 4.639698586561833, 4.848635077524331, 5.809095170345379, 6.225131357958950, 6.651607214068031, 7.221520415891038, 7.702909325838825, 8.287363455832070, 8.812741625043623, 9.106803601429708, 9.709870871815578, 10.10662292277912, 10.46325549592449, 11.36723760208353, 11.62621999698623, 12.04539775731020, 12.66205736449891, 12.98387231745891, 13.73342384417774

Graph of the $Z$-function along the critical line