Properties

Label 2-158400-1.1-c1-0-178
Degree $2$
Conductor $158400$
Sign $1$
Analytic cond. $1264.83$
Root an. cond. $35.5644$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 11-s + 4·13-s + 8·19-s + 4·23-s + 2·29-s + 4·31-s + 8·37-s + 2·41-s − 4·47-s − 7·49-s − 12·53-s − 12·59-s − 2·61-s + 12·67-s + 12·73-s + 12·79-s + 8·83-s − 6·89-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 0.301·11-s + 1.10·13-s + 1.83·19-s + 0.834·23-s + 0.371·29-s + 0.718·31-s + 1.31·37-s + 0.312·41-s − 0.583·47-s − 49-s − 1.64·53-s − 1.56·59-s − 0.256·61-s + 1.46·67-s + 1.40·73-s + 1.35·79-s + 0.878·83-s − 0.635·89-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 158400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 158400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(158400\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(1264.83\)
Root analytic conductor: \(35.5644\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 158400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.757355349\)
\(L(\frac12)\) \(\approx\) \(3.757355349\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 - T \)
good7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 12 T + p T^{2} \) 1.73.am
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.25695968782861, −12.90986765652249, −12.28879344699998, −11.86081154277673, −11.29439337047961, −11.01988059558953, −10.56828115805992, −9.724454752410577, −9.437342867652717, −9.196957398515602, −8.293196514476135, −7.995849746538586, −7.619672905690233, −6.700256563389198, −6.569484934365364, −5.939028886076755, −5.328284536212630, −4.850548414384526, −4.314009910752258, −3.554259416232208, −3.180499640184723, −2.669427101327285, −1.705649406386794, −1.158700967519838, −0.6443717702193690, 0.6443717702193690, 1.158700967519838, 1.705649406386794, 2.669427101327285, 3.180499640184723, 3.554259416232208, 4.314009910752258, 4.850548414384526, 5.328284536212630, 5.939028886076755, 6.569484934365364, 6.700256563389198, 7.619672905690233, 7.995849746538586, 8.293196514476135, 9.196957398515602, 9.437342867652717, 9.724454752410577, 10.56828115805992, 11.01988059558953, 11.29439337047961, 11.86081154277673, 12.28879344699998, 12.90986765652249, 13.25695968782861

Graph of the $Z$-function along the critical line