Properties

Label 2-158400-1.1-c1-0-13
Degree $2$
Conductor $158400$
Sign $1$
Analytic cond. $1264.83$
Root an. cond. $35.5644$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·7-s − 11-s − 13-s + 8·17-s − 5·19-s − 9·23-s + 5·29-s − 7·31-s − 2·37-s − 2·41-s − 9·43-s + 12·47-s − 3·49-s − 4·53-s + 10·59-s − 2·61-s + 2·67-s − 13·71-s − 14·73-s + 2·77-s − 83-s + 15·89-s + 2·91-s + 7·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  − 0.755·7-s − 0.301·11-s − 0.277·13-s + 1.94·17-s − 1.14·19-s − 1.87·23-s + 0.928·29-s − 1.25·31-s − 0.328·37-s − 0.312·41-s − 1.37·43-s + 1.75·47-s − 3/7·49-s − 0.549·53-s + 1.30·59-s − 0.256·61-s + 0.244·67-s − 1.54·71-s − 1.63·73-s + 0.227·77-s − 0.109·83-s + 1.58·89-s + 0.209·91-s + 0.710·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 158400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 158400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(158400\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(1264.83\)
Root analytic conductor: \(35.5644\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 158400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6012940571\)
\(L(\frac12)\) \(\approx\) \(0.6012940571\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 + T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 - 8 T + p T^{2} \) 1.17.ai
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 + 9 T + p T^{2} \) 1.23.j
29 \( 1 - 5 T + p T^{2} \) 1.29.af
31 \( 1 + 7 T + p T^{2} \) 1.31.h
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 9 T + p T^{2} \) 1.43.j
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 13 T + p T^{2} \) 1.71.n
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + T + p T^{2} \) 1.83.b
89 \( 1 - 15 T + p T^{2} \) 1.89.ap
97 \( 1 - 7 T + p T^{2} \) 1.97.ah
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.27675419265559, −12.70978242517467, −12.38791711880603, −11.89705003147561, −11.61980748136328, −10.66282135393005, −10.35706711000788, −10.01373659623380, −9.631132766776097, −8.897336914083140, −8.480635089245116, −7.930761878791955, −7.483928553102808, −7.000782817526599, −6.241861179981577, −6.023455027794772, −5.411251629007551, −4.900272613980753, −4.125497976870077, −3.694543942381957, −3.174210059042861, −2.532240294937544, −1.898749033956015, −1.226028836268645, −0.2282814345527808, 0.2282814345527808, 1.226028836268645, 1.898749033956015, 2.532240294937544, 3.174210059042861, 3.694543942381957, 4.125497976870077, 4.900272613980753, 5.411251629007551, 6.023455027794772, 6.241861179981577, 7.000782817526599, 7.483928553102808, 7.930761878791955, 8.480635089245116, 8.897336914083140, 9.631132766776097, 10.01373659623380, 10.35706711000788, 10.66282135393005, 11.61980748136328, 11.89705003147561, 12.38791711880603, 12.70978242517467, 13.27675419265559

Graph of the $Z$-function along the critical line