Properties

Label 2-15341-1.1-c1-0-1
Degree $2$
Conductor $15341$
Sign $-1$
Analytic cond. $122.498$
Root an. cond. $11.0679$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·3-s + 2·4-s + 4·6-s + 9-s + 4·12-s − 13-s − 4·16-s + 7·17-s + 2·18-s − 7·19-s − 5·25-s − 2·26-s − 4·27-s + 29-s − 6·31-s − 8·32-s + 14·34-s + 2·36-s − 7·37-s − 14·38-s − 2·39-s + 4·41-s − 7·43-s − 12·47-s − 8·48-s − 7·49-s + ⋯
L(s)  = 1  + 1.41·2-s + 1.15·3-s + 4-s + 1.63·6-s + 1/3·9-s + 1.15·12-s − 0.277·13-s − 16-s + 1.69·17-s + 0.471·18-s − 1.60·19-s − 25-s − 0.392·26-s − 0.769·27-s + 0.185·29-s − 1.07·31-s − 1.41·32-s + 2.40·34-s + 1/3·36-s − 1.15·37-s − 2.27·38-s − 0.320·39-s + 0.624·41-s − 1.06·43-s − 1.75·47-s − 1.15·48-s − 49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 15341 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15341 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(15341\)    =    \(23^{2} \cdot 29\)
Sign: $-1$
Analytic conductor: \(122.498\)
Root analytic conductor: \(11.0679\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 15341,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad23 \( 1 \)
29 \( 1 - T \)
good2 \( 1 - p T + p T^{2} \) 1.2.ac
3 \( 1 - 2 T + p T^{2} \) 1.3.ac
5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 - 7 T + p T^{2} \) 1.17.ah
19 \( 1 + 7 T + p T^{2} \) 1.19.h
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 - 5 T + p T^{2} \) 1.59.af
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 + 7 T + p T^{2} \) 1.71.h
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 + 7 T + p T^{2} \) 1.79.h
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 - 7 T + p T^{2} \) 1.89.ah
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.08152669014102, −15.43948275261955, −14.77480032923587, −14.60215306045763, −14.24086208920861, −13.59133551065044, −12.93951572534557, −12.77657952347471, −11.95747333034535, −11.53168600611454, −10.76838318952597, −9.928327699226115, −9.543900468372470, −8.724380272159054, −8.195345580749124, −7.700866884057346, −6.794316684452415, −6.311216433166249, −5.364471917580524, −5.147616935356040, −3.995905282816201, −3.713968829217732, −3.094575838166054, −2.316558852264583, −1.715064242480141, 0, 1.715064242480141, 2.316558852264583, 3.094575838166054, 3.713968829217732, 3.995905282816201, 5.147616935356040, 5.364471917580524, 6.311216433166249, 6.794316684452415, 7.700866884057346, 8.195345580749124, 8.724380272159054, 9.543900468372470, 9.928327699226115, 10.76838318952597, 11.53168600611454, 11.95747333034535, 12.77657952347471, 12.93951572534557, 13.59133551065044, 14.24086208920861, 14.60215306045763, 14.77480032923587, 15.43948275261955, 16.08152669014102

Graph of the $Z$-function along the critical line