Properties

Label 2-14976-1.1-c1-0-10
Degree $2$
Conductor $14976$
Sign $1$
Analytic cond. $119.583$
Root an. cond. $10.9354$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 4·7-s − 13-s + 2·17-s + 6·19-s + 8·23-s − 25-s − 4·29-s + 4·31-s − 8·35-s + 6·37-s + 8·43-s + 9·49-s − 8·59-s − 10·61-s + 2·65-s + 14·67-s + 8·71-s − 2·73-s + 14·79-s − 4·83-s − 4·85-s − 8·89-s − 4·91-s − 12·95-s − 10·97-s + 101-s + ⋯
L(s)  = 1  − 0.894·5-s + 1.51·7-s − 0.277·13-s + 0.485·17-s + 1.37·19-s + 1.66·23-s − 1/5·25-s − 0.742·29-s + 0.718·31-s − 1.35·35-s + 0.986·37-s + 1.21·43-s + 9/7·49-s − 1.04·59-s − 1.28·61-s + 0.248·65-s + 1.71·67-s + 0.949·71-s − 0.234·73-s + 1.57·79-s − 0.439·83-s − 0.433·85-s − 0.847·89-s − 0.419·91-s − 1.23·95-s − 1.01·97-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14976 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14976 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(14976\)    =    \(2^{7} \cdot 3^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(119.583\)
Root analytic conductor: \(10.9354\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 14976,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.550522424\)
\(L(\frac12)\) \(\approx\) \(2.550522424\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 8 T + p T^{2} \) 1.89.i
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.99669433459663, −15.32255037945571, −15.06458444550354, −14.44384981705328, −13.92092585079513, −13.39505914980260, −12.42877780336261, −12.16611702403745, −11.35684139169192, −11.19128968470231, −10.64592718223830, −9.559156313660945, −9.325363299403312, −8.302723912875123, −7.970541595373147, −7.450309214708669, −6.973242628919322, −5.875472653964039, −5.229477857518872, −4.729248064743017, −4.075687567420530, −3.273272966621485, −2.520571471353287, −1.436177386250942, −0.7722565586564398, 0.7722565586564398, 1.436177386250942, 2.520571471353287, 3.273272966621485, 4.075687567420530, 4.729248064743017, 5.229477857518872, 5.875472653964039, 6.973242628919322, 7.450309214708669, 7.970541595373147, 8.302723912875123, 9.325363299403312, 9.559156313660945, 10.64592718223830, 11.19128968470231, 11.35684139169192, 12.16611702403745, 12.42877780336261, 13.39505914980260, 13.92092585079513, 14.44384981705328, 15.06458444550354, 15.32255037945571, 15.99669433459663

Graph of the $Z$-function along the critical line