Properties

Label 2-14586-1.1-c1-0-1
Degree $2$
Conductor $14586$
Sign $-1$
Analytic cond. $116.469$
Root an. cond. $10.7921$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s − 2·5-s + 6-s − 3·7-s − 8-s + 9-s + 2·10-s + 11-s − 12-s + 13-s + 3·14-s + 2·15-s + 16-s − 17-s − 18-s − 4·19-s − 2·20-s + 3·21-s − 22-s + 2·23-s + 24-s − 25-s − 26-s − 27-s − 3·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.894·5-s + 0.408·6-s − 1.13·7-s − 0.353·8-s + 1/3·9-s + 0.632·10-s + 0.301·11-s − 0.288·12-s + 0.277·13-s + 0.801·14-s + 0.516·15-s + 1/4·16-s − 0.242·17-s − 0.235·18-s − 0.917·19-s − 0.447·20-s + 0.654·21-s − 0.213·22-s + 0.417·23-s + 0.204·24-s − 1/5·25-s − 0.196·26-s − 0.192·27-s − 0.566·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14586 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14586 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(14586\)    =    \(2 \cdot 3 \cdot 11 \cdot 13 \cdot 17\)
Sign: $-1$
Analytic conductor: \(116.469\)
Root analytic conductor: \(10.7921\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 14586,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
11 \( 1 - T \)
13 \( 1 - T \)
17 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + 3 T + p T^{2} \) 1.7.d
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 - 9 T + p T^{2} \) 1.43.aj
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 - 3 T + p T^{2} \) 1.67.ad
71 \( 1 + T + p T^{2} \) 1.71.b
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 7 T + p T^{2} \) 1.83.ah
89 \( 1 + 9 T + p T^{2} \) 1.89.j
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.42208429895078, −16.04033730610440, −15.36831494384759, −15.00044712132825, −14.29729528951993, −13.32782731982856, −12.79570662632189, −12.51867127899571, −11.64302541989488, −11.27172927084859, −10.79667130359423, −10.07483235350304, −9.513269328576703, −8.959577529768322, −8.354804769025143, −7.531902334308715, −7.146284672273492, −6.412272741783395, −5.989658139632815, −5.170476766807593, −4.033573765314735, −3.826625515914170, −2.835945618855465, −1.929527759069653, −0.7605273698087398, 0, 0.7605273698087398, 1.929527759069653, 2.835945618855465, 3.826625515914170, 4.033573765314735, 5.170476766807593, 5.989658139632815, 6.412272741783395, 7.146284672273492, 7.531902334308715, 8.354804769025143, 8.959577529768322, 9.513269328576703, 10.07483235350304, 10.79667130359423, 11.27172927084859, 11.64302541989488, 12.51867127899571, 12.79570662632189, 13.32782731982856, 14.29729528951993, 15.00044712132825, 15.36831494384759, 16.04033730610440, 16.42208429895078

Graph of the $Z$-function along the critical line