Properties

Label 2-143650-1.1-c1-0-3
Degree $2$
Conductor $143650$
Sign $1$
Analytic cond. $1147.05$
Root an. cond. $33.8681$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s + 2·7-s − 8-s − 2·9-s − 12-s − 2·14-s + 16-s + 17-s + 2·18-s + 19-s − 2·21-s − 6·23-s + 24-s + 5·27-s + 2·28-s − 9·29-s + 31-s − 32-s − 34-s − 2·36-s − 4·37-s − 38-s + 6·41-s + 2·42-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s + 0.755·7-s − 0.353·8-s − 2/3·9-s − 0.288·12-s − 0.534·14-s + 1/4·16-s + 0.242·17-s + 0.471·18-s + 0.229·19-s − 0.436·21-s − 1.25·23-s + 0.204·24-s + 0.962·27-s + 0.377·28-s − 1.67·29-s + 0.179·31-s − 0.176·32-s − 0.171·34-s − 1/3·36-s − 0.657·37-s − 0.162·38-s + 0.937·41-s + 0.308·42-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 143650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 143650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(143650\)    =    \(2 \cdot 5^{2} \cdot 13^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(1147.05\)
Root analytic conductor: \(33.8681\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 143650,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8258496026\)
\(L(\frac12)\) \(\approx\) \(0.8258496026\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 \)
13 \( 1 \)
17 \( 1 - T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + p T^{2} \) 1.11.a
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 - T + p T^{2} \) 1.31.ab
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 + 7 T + p T^{2} \) 1.97.h
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.41175920530321, −12.72206397898315, −12.28850178037770, −11.73466010427835, −11.46245941057199, −11.02262644246607, −10.58275304458362, −10.04713691938354, −9.509615418640198, −9.071172876589692, −8.465843249788819, −7.992911340111220, −7.710343307424486, −7.063701187088608, −6.407224045210368, −6.034184526671320, −5.386428253996382, −5.114319602505440, −4.355821331782488, −3.637609859060634, −3.165599733316968, −2.198194927983721, −1.928875314602355, −1.076215608960600, −0.3455236819010576, 0.3455236819010576, 1.076215608960600, 1.928875314602355, 2.198194927983721, 3.165599733316968, 3.637609859060634, 4.355821331782488, 5.114319602505440, 5.386428253996382, 6.034184526671320, 6.407224045210368, 7.063701187088608, 7.710343307424486, 7.992911340111220, 8.465843249788819, 9.071172876589692, 9.509615418640198, 10.04713691938354, 10.58275304458362, 11.02262644246607, 11.46245941057199, 11.73466010427835, 12.28850178037770, 12.72206397898315, 13.41175920530321

Graph of the $Z$-function along the critical line