Properties

Label 2-143550-1.1-c1-0-7
Degree $2$
Conductor $143550$
Sign $1$
Analytic cond. $1146.25$
Root an. cond. $33.8563$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5·7-s − 8-s − 11-s − 2·13-s + 5·14-s + 16-s − 4·17-s − 2·19-s + 22-s + 4·23-s + 2·26-s − 5·28-s + 29-s − 8·31-s − 32-s + 4·34-s − 2·37-s + 2·38-s + 5·41-s + 13·43-s − 44-s − 4·46-s − 3·47-s + 18·49-s − 2·52-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 1.88·7-s − 0.353·8-s − 0.301·11-s − 0.554·13-s + 1.33·14-s + 1/4·16-s − 0.970·17-s − 0.458·19-s + 0.213·22-s + 0.834·23-s + 0.392·26-s − 0.944·28-s + 0.185·29-s − 1.43·31-s − 0.176·32-s + 0.685·34-s − 0.328·37-s + 0.324·38-s + 0.780·41-s + 1.98·43-s − 0.150·44-s − 0.589·46-s − 0.437·47-s + 18/7·49-s − 0.277·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 143550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 143550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(143550\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 29\)
Sign: $1$
Analytic conductor: \(1146.25\)
Root analytic conductor: \(33.8563\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 143550,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6028864423\)
\(L(\frac12)\) \(\approx\) \(0.6028864423\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 + T \)
29 \( 1 - T \)
good7 \( 1 + 5 T + p T^{2} \) 1.7.f
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 5 T + p T^{2} \) 1.41.af
43 \( 1 - 13 T + p T^{2} \) 1.43.an
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 9 T + p T^{2} \) 1.67.aj
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 - 16 T + p T^{2} \) 1.73.aq
79 \( 1 - 13 T + p T^{2} \) 1.79.an
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 5 T + p T^{2} \) 1.97.f
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.17770064340280, −12.84155760536205, −12.39825451122608, −12.23176442245431, −11.13963140948934, −10.91206575812352, −10.60674273608564, −9.800618097467709, −9.447140739230395, −9.248440358382670, −8.693595908174417, −8.054512851515538, −7.326018457580959, −7.158440480798794, −6.363798509310579, −6.315780225939565, −5.524717795133615, −4.943470485510413, −4.178865130585772, −3.577146787344500, −3.094213902579542, −2.386837312035684, −2.111763937396036, −0.9169347445248217, −0.3114126322442234, 0.3114126322442234, 0.9169347445248217, 2.111763937396036, 2.386837312035684, 3.094213902579542, 3.577146787344500, 4.178865130585772, 4.943470485510413, 5.524717795133615, 6.315780225939565, 6.363798509310579, 7.158440480798794, 7.326018457580959, 8.054512851515538, 8.693595908174417, 9.248440358382670, 9.447140739230395, 9.800618097467709, 10.60674273608564, 10.91206575812352, 11.13963140948934, 12.23176442245431, 12.39825451122608, 12.84155760536205, 13.17770064340280

Graph of the $Z$-function along the critical line