| L(s)  = 1 | − 2-s     + 4-s       − 5·7-s   − 8-s       − 11-s     − 2·13-s   + 5·14-s     + 16-s   − 4·17-s     − 2·19-s       + 22-s   + 4·23-s       + 2·26-s     − 5·28-s   + 29-s     − 8·31-s   − 32-s     + 4·34-s       − 2·37-s   + 2·38-s       + 5·41-s     + 13·43-s   − 44-s     − 4·46-s   − 3·47-s     + 18·49-s       − 2·52-s  + ⋯ | 
| L(s)  = 1 | − 0.707·2-s     + 1/2·4-s       − 1.88·7-s   − 0.353·8-s       − 0.301·11-s     − 0.554·13-s   + 1.33·14-s     + 1/4·16-s   − 0.970·17-s     − 0.458·19-s       + 0.213·22-s   + 0.834·23-s       + 0.392·26-s     − 0.944·28-s   + 0.185·29-s     − 1.43·31-s   − 0.176·32-s     + 0.685·34-s       − 0.328·37-s   + 0.324·38-s       + 0.780·41-s     + 1.98·43-s   − 0.150·44-s     − 0.589·46-s   − 0.437·47-s     + 18/7·49-s       − 0.277·52-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 143550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 143550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(\approx\) | \(0.6028864423\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(0.6028864423\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 | \( 1 + T \) |  | 
|  | 3 | \( 1 \) |  | 
|  | 5 | \( 1 \) |  | 
|  | 11 | \( 1 + T \) |  | 
|  | 29 | \( 1 - T \) |  | 
| good | 7 | \( 1 + 5 T + p T^{2} \) | 1.7.f | 
|  | 13 | \( 1 + 2 T + p T^{2} \) | 1.13.c | 
|  | 17 | \( 1 + 4 T + p T^{2} \) | 1.17.e | 
|  | 19 | \( 1 + 2 T + p T^{2} \) | 1.19.c | 
|  | 23 | \( 1 - 4 T + p T^{2} \) | 1.23.ae | 
|  | 31 | \( 1 + 8 T + p T^{2} \) | 1.31.i | 
|  | 37 | \( 1 + 2 T + p T^{2} \) | 1.37.c | 
|  | 41 | \( 1 - 5 T + p T^{2} \) | 1.41.af | 
|  | 43 | \( 1 - 13 T + p T^{2} \) | 1.43.an | 
|  | 47 | \( 1 + 3 T + p T^{2} \) | 1.47.d | 
|  | 53 | \( 1 + 3 T + p T^{2} \) | 1.53.d | 
|  | 59 | \( 1 + 12 T + p T^{2} \) | 1.59.m | 
|  | 61 | \( 1 + p T^{2} \) | 1.61.a | 
|  | 67 | \( 1 - 9 T + p T^{2} \) | 1.67.aj | 
|  | 71 | \( 1 - 9 T + p T^{2} \) | 1.71.aj | 
|  | 73 | \( 1 - 16 T + p T^{2} \) | 1.73.aq | 
|  | 79 | \( 1 - 13 T + p T^{2} \) | 1.79.an | 
|  | 83 | \( 1 - 4 T + p T^{2} \) | 1.83.ae | 
|  | 89 | \( 1 + p T^{2} \) | 1.89.a | 
|  | 97 | \( 1 + 5 T + p T^{2} \) | 1.97.f | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−13.17770064340280, −12.84155760536205, −12.39825451122608, −12.23176442245431, −11.13963140948934, −10.91206575812352, −10.60674273608564, −9.800618097467709, −9.447140739230395, −9.248440358382670, −8.693595908174417, −8.054512851515538, −7.326018457580959, −7.158440480798794, −6.363798509310579, −6.315780225939565, −5.524717795133615, −4.943470485510413, −4.178865130585772, −3.577146787344500, −3.094213902579542, −2.386837312035684, −2.111763937396036, −0.9169347445248217, −0.3114126322442234, 
0.3114126322442234, 0.9169347445248217, 2.111763937396036, 2.386837312035684, 3.094213902579542, 3.577146787344500, 4.178865130585772, 4.943470485510413, 5.524717795133615, 6.315780225939565, 6.363798509310579, 7.158440480798794, 7.326018457580959, 8.054512851515538, 8.693595908174417, 9.248440358382670, 9.447140739230395, 9.800618097467709, 10.60674273608564, 10.91206575812352, 11.13963140948934, 12.23176442245431, 12.39825451122608, 12.84155760536205, 13.17770064340280
