Properties

Label 2-143325-1.1-c1-0-139
Degree $2$
Conductor $143325$
Sign $-1$
Analytic cond. $1144.45$
Root an. cond. $33.8298$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 3·11-s + 13-s + 4·16-s + 3·17-s + 4·19-s − 9·23-s + 6·29-s − 2·31-s + 37-s − 3·41-s − 2·43-s − 6·44-s + 6·47-s − 2·52-s + 9·53-s − 12·59-s − 5·61-s − 8·64-s + 4·67-s − 6·68-s − 9·71-s + 14·73-s − 8·76-s − 7·79-s + 15·89-s + 18·92-s + ⋯
L(s)  = 1  − 4-s + 0.904·11-s + 0.277·13-s + 16-s + 0.727·17-s + 0.917·19-s − 1.87·23-s + 1.11·29-s − 0.359·31-s + 0.164·37-s − 0.468·41-s − 0.304·43-s − 0.904·44-s + 0.875·47-s − 0.277·52-s + 1.23·53-s − 1.56·59-s − 0.640·61-s − 64-s + 0.488·67-s − 0.727·68-s − 1.06·71-s + 1.63·73-s − 0.917·76-s − 0.787·79-s + 1.58·89-s + 1.87·92-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 143325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 143325 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(143325\)    =    \(3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(1144.45\)
Root analytic conductor: \(33.8298\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 143325,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 \)
13 \( 1 - T \)
good2 \( 1 + p T^{2} \) 1.2.a
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 9 T + p T^{2} \) 1.23.j
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 9 T + p T^{2} \) 1.71.j
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 7 T + p T^{2} \) 1.79.h
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 15 T + p T^{2} \) 1.89.ap
97 \( 1 - 5 T + p T^{2} \) 1.97.af
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.79499207061884, −13.32172526708006, −12.50297529049023, −12.23728885522403, −11.86253434141123, −11.37797537621329, −10.55936941296042, −10.12173457245531, −9.877427849415252, −9.119094491682126, −8.968942177988457, −8.306919627947231, −7.721819154862641, −7.550334025484970, −6.516981622118818, −6.289608097875015, −5.519258806297435, −5.265600165344361, −4.426403530675184, −4.089248835479253, −3.525554042303703, −3.054246054099656, −2.144466373119125, −1.362751552482469, −0.8891520775563378, 0, 0.8891520775563378, 1.362751552482469, 2.144466373119125, 3.054246054099656, 3.525554042303703, 4.089248835479253, 4.426403530675184, 5.265600165344361, 5.519258806297435, 6.289608097875015, 6.516981622118818, 7.550334025484970, 7.721819154862641, 8.306919627947231, 8.968942177988457, 9.119094491682126, 9.877427849415252, 10.12173457245531, 10.55936941296042, 11.37797537621329, 11.86253434141123, 12.23728885522403, 12.50297529049023, 13.32172526708006, 13.79499207061884

Graph of the $Z$-function along the critical line