L(s) = 1 | + 2-s − 3-s + 4-s + 2·5-s − 6-s + 8-s + 9-s + 2·10-s − 12-s − 2·13-s − 2·15-s + 16-s + 2·17-s + 18-s − 8·19-s + 2·20-s − 23-s − 24-s − 25-s − 2·26-s − 27-s − 2·29-s − 2·30-s − 8·31-s + 32-s + 2·34-s + 36-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.894·5-s − 0.408·6-s + 0.353·8-s + 1/3·9-s + 0.632·10-s − 0.288·12-s − 0.554·13-s − 0.516·15-s + 1/4·16-s + 0.485·17-s + 0.235·18-s − 1.83·19-s + 0.447·20-s − 0.208·23-s − 0.204·24-s − 1/5·25-s − 0.392·26-s − 0.192·27-s − 0.371·29-s − 0.365·30-s − 1.43·31-s + 0.176·32-s + 0.342·34-s + 1/6·36-s + ⋯ |
Λ(s)=(=(138s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(138s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.487730768 |
L(21) |
≈ |
1.487730768 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) | Isogeny Class over Fp |
---|
bad | 2 | 1−T | |
| 3 | 1+T | |
| 23 | 1+T | |
good | 5 | 1−2T+pT2 | 1.5.ac |
| 7 | 1+pT2 | 1.7.a |
| 11 | 1+pT2 | 1.11.a |
| 13 | 1+2T+pT2 | 1.13.c |
| 17 | 1−2T+pT2 | 1.17.ac |
| 19 | 1+8T+pT2 | 1.19.i |
| 29 | 1+2T+pT2 | 1.29.c |
| 31 | 1+8T+pT2 | 1.31.i |
| 37 | 1−2T+pT2 | 1.37.ac |
| 41 | 1−10T+pT2 | 1.41.ak |
| 43 | 1−8T+pT2 | 1.43.ai |
| 47 | 1−8T+pT2 | 1.47.ai |
| 53 | 1−2T+pT2 | 1.53.ac |
| 59 | 1+4T+pT2 | 1.59.e |
| 61 | 1−2T+pT2 | 1.61.ac |
| 67 | 1−8T+pT2 | 1.67.ai |
| 71 | 1+pT2 | 1.71.a |
| 73 | 1+6T+pT2 | 1.73.g |
| 79 | 1−8T+pT2 | 1.79.ai |
| 83 | 1+16T+pT2 | 1.83.q |
| 89 | 1−18T+pT2 | 1.89.as |
| 97 | 1−10T+pT2 | 1.97.ak |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.99091917601195955204136966309, −12.47239235999888074523687731605, −11.18195471039845683279157830959, −10.34314478687064358780223455819, −9.229114075576505473092106150497, −7.56963733345572718426271943739, −6.29398123690432140072875572952, −5.50969858567909471909928316815, −4.17219923557025010086906698339, −2.18807119288166115407408001809,
2.18807119288166115407408001809, 4.17219923557025010086906698339, 5.50969858567909471909928316815, 6.29398123690432140072875572952, 7.56963733345572718426271943739, 9.229114075576505473092106150497, 10.34314478687064358780223455819, 11.18195471039845683279157830959, 12.47239235999888074523687731605, 12.99091917601195955204136966309