Properties

Label 2-133584-1.1-c1-0-11
Degree $2$
Conductor $133584$
Sign $1$
Analytic cond. $1066.67$
Root an. cond. $32.6599$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·7-s + 9-s + 6·13-s − 4·17-s + 2·19-s + 2·21-s + 23-s − 5·25-s − 27-s − 2·29-s − 4·31-s + 2·37-s − 6·39-s − 2·41-s + 10·43-s − 3·49-s + 4·51-s − 12·53-s − 2·57-s + 12·59-s + 6·61-s − 2·63-s + 10·67-s − 69-s − 8·71-s + 14·73-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.755·7-s + 1/3·9-s + 1.66·13-s − 0.970·17-s + 0.458·19-s + 0.436·21-s + 0.208·23-s − 25-s − 0.192·27-s − 0.371·29-s − 0.718·31-s + 0.328·37-s − 0.960·39-s − 0.312·41-s + 1.52·43-s − 3/7·49-s + 0.560·51-s − 1.64·53-s − 0.264·57-s + 1.56·59-s + 0.768·61-s − 0.251·63-s + 1.22·67-s − 0.120·69-s − 0.949·71-s + 1.63·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 133584 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 133584 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(133584\)    =    \(2^{4} \cdot 3 \cdot 11^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(1066.67\)
Root analytic conductor: \(32.6599\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 133584,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.450790499\)
\(L(\frac12)\) \(\approx\) \(1.450790499\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
11 \( 1 \)
23 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 16 T + p T^{2} \) 1.89.q
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.39909609005199, −12.93155801449486, −12.63606104436912, −12.01398526566119, −11.31458310704307, −11.11402802587390, −10.80478021721892, −10.03435962848649, −9.528013122648264, −9.254886711172723, −8.580413696899046, −8.090277607647917, −7.545238554245765, −6.751174521953755, −6.612080963011150, −5.938827194671868, −5.611985865345653, −4.982068150462387, −4.210378280864081, −3.763408636326702, −3.372845667060870, −2.498006565697379, −1.861910921495054, −1.111802492525105, −0.4153496253762989, 0.4153496253762989, 1.111802492525105, 1.861910921495054, 2.498006565697379, 3.372845667060870, 3.763408636326702, 4.210378280864081, 4.982068150462387, 5.611985865345653, 5.938827194671868, 6.612080963011150, 6.751174521953755, 7.545238554245765, 8.090277607647917, 8.580413696899046, 9.254886711172723, 9.528013122648264, 10.03435962848649, 10.80478021721892, 11.11402802587390, 11.31458310704307, 12.01398526566119, 12.63606104436912, 12.93155801449486, 13.39909609005199

Graph of the $Z$-function along the critical line