Properties

Label 2-364e2-1.1-c1-0-105
Degree $2$
Conductor $132496$
Sign $1$
Analytic cond. $1057.98$
Root an. cond. $32.5266$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3·5-s − 2·9-s + 3·11-s + 3·15-s + 6·17-s + 19-s + 4·25-s + 5·27-s − 3·29-s − 5·31-s − 3·33-s − 10·37-s − 9·41-s − 5·43-s + 6·45-s − 3·47-s − 6·51-s + 9·53-s − 9·55-s − 57-s − 12·59-s + 5·61-s − 5·67-s − 15·71-s − 73-s − 4·75-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.34·5-s − 2/3·9-s + 0.904·11-s + 0.774·15-s + 1.45·17-s + 0.229·19-s + 4/5·25-s + 0.962·27-s − 0.557·29-s − 0.898·31-s − 0.522·33-s − 1.64·37-s − 1.40·41-s − 0.762·43-s + 0.894·45-s − 0.437·47-s − 0.840·51-s + 1.23·53-s − 1.21·55-s − 0.132·57-s − 1.56·59-s + 0.640·61-s − 0.610·67-s − 1.78·71-s − 0.117·73-s − 0.461·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 132496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 132496 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(132496\)    =    \(2^{4} \cdot 7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(1057.98\)
Root analytic conductor: \(32.5266\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 132496,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
13 \( 1 \)
good3 \( 1 + T + p T^{2} \) 1.3.b
5 \( 1 + 3 T + p T^{2} \) 1.5.d
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 9 T + p T^{2} \) 1.41.j
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 + 15 T + p T^{2} \) 1.71.p
73 \( 1 + T + p T^{2} \) 1.73.b
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 13 T + p T^{2} \) 1.97.n
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.83542931981088, −13.66687265511371, −12.73791156298758, −12.21058915059037, −12.05995312024811, −11.55950448806458, −11.30765653528386, −10.62471888904773, −10.23503446362124, −9.602996535168238, −8.975668996719465, −8.520058501704797, −8.130962491321734, −7.489878317387310, −7.075482580570052, −6.628127299384527, −5.887554500115270, −5.399814851660463, −5.046632588456501, −4.216882893487097, −3.746872884438194, −3.308186967357195, −2.808342734242283, −1.609680021078974, −1.225918980480055, 0, 0, 1.225918980480055, 1.609680021078974, 2.808342734242283, 3.308186967357195, 3.746872884438194, 4.216882893487097, 5.046632588456501, 5.399814851660463, 5.887554500115270, 6.628127299384527, 7.075482580570052, 7.489878317387310, 8.130962491321734, 8.520058501704797, 8.975668996719465, 9.602996535168238, 10.23503446362124, 10.62471888904773, 11.30765653528386, 11.55950448806458, 12.05995312024811, 12.21058915059037, 12.73791156298758, 13.66687265511371, 13.83542931981088

Graph of the $Z$-function along the critical line