Properties

Label 2-364e2-1.1-c1-0-68
Degree $2$
Conductor $132496$
Sign $-1$
Analytic cond. $1057.98$
Root an. cond. $32.5266$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 3·5-s + 6·9-s − 5·11-s + 9·15-s + 17-s + 7·19-s + 23-s + 4·25-s − 9·27-s − 2·29-s + 5·31-s + 15·33-s + 11·37-s − 6·41-s + 12·43-s − 18·45-s + 7·47-s − 3·51-s + 11·53-s + 15·55-s − 21·57-s − 3·59-s + 5·61-s − 67-s − 3·69-s − 11·73-s + ⋯
L(s)  = 1  − 1.73·3-s − 1.34·5-s + 2·9-s − 1.50·11-s + 2.32·15-s + 0.242·17-s + 1.60·19-s + 0.208·23-s + 4/5·25-s − 1.73·27-s − 0.371·29-s + 0.898·31-s + 2.61·33-s + 1.80·37-s − 0.937·41-s + 1.82·43-s − 2.68·45-s + 1.02·47-s − 0.420·51-s + 1.51·53-s + 2.02·55-s − 2.78·57-s − 0.390·59-s + 0.640·61-s − 0.122·67-s − 0.361·69-s − 1.28·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 132496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 132496 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(132496\)    =    \(2^{4} \cdot 7^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(1057.98\)
Root analytic conductor: \(32.5266\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 132496,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
13 \( 1 \)
good3 \( 1 + p T + p T^{2} \) 1.3.d
5 \( 1 + 3 T + p T^{2} \) 1.5.d
11 \( 1 + 5 T + p T^{2} \) 1.11.f
17 \( 1 - T + p T^{2} \) 1.17.ab
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 - 11 T + p T^{2} \) 1.37.al
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 - 7 T + p T^{2} \) 1.47.ah
53 \( 1 - 11 T + p T^{2} \) 1.53.al
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 + T + p T^{2} \) 1.67.b
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 - 5 T + p T^{2} \) 1.79.af
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 5 T + p T^{2} \) 1.89.af
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.51362804826923, −13.04968510843745, −12.60374167035248, −11.96884131176762, −11.92287042321430, −11.20938083976643, −11.11264999751832, −10.39792795964453, −10.10331165895932, −9.537530777511888, −8.791141192857409, −8.100427911917014, −7.562421837459509, −7.414415308813100, −6.900585946123381, −6.001290211678413, −5.729650798303675, −5.231911137569394, −4.643389713110555, −4.310975174085230, −3.590728259506125, −2.937667701739510, −2.277702484922133, −1.007956022344481, −0.7751149281360981, 0, 0.7751149281360981, 1.007956022344481, 2.277702484922133, 2.937667701739510, 3.590728259506125, 4.310975174085230, 4.643389713110555, 5.231911137569394, 5.729650798303675, 6.001290211678413, 6.900585946123381, 7.414415308813100, 7.562421837459509, 8.100427911917014, 8.791141192857409, 9.537530777511888, 10.10331165895932, 10.39792795964453, 11.11264999751832, 11.20938083976643, 11.92287042321430, 11.96884131176762, 12.60374167035248, 13.04968510843745, 13.51362804826923

Graph of the $Z$-function along the critical line