Properties

Label 2-13248-1.1-c1-0-28
Degree $2$
Conductor $13248$
Sign $-1$
Analytic cond. $105.785$
Root an. cond. $10.2852$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 2·7-s − 4·11-s + 2·13-s + 2·17-s + 2·19-s − 23-s − 25-s − 4·29-s − 4·35-s − 2·37-s + 2·43-s + 12·47-s − 3·49-s + 2·53-s + 8·55-s − 12·59-s + 14·61-s − 4·65-s − 2·67-s + 6·73-s − 8·77-s + 6·79-s − 4·83-s − 4·85-s − 18·89-s + 4·91-s + ⋯
L(s)  = 1  − 0.894·5-s + 0.755·7-s − 1.20·11-s + 0.554·13-s + 0.485·17-s + 0.458·19-s − 0.208·23-s − 1/5·25-s − 0.742·29-s − 0.676·35-s − 0.328·37-s + 0.304·43-s + 1.75·47-s − 3/7·49-s + 0.274·53-s + 1.07·55-s − 1.56·59-s + 1.79·61-s − 0.496·65-s − 0.244·67-s + 0.702·73-s − 0.911·77-s + 0.675·79-s − 0.439·83-s − 0.433·85-s − 1.90·89-s + 0.419·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 13248 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13248 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(13248\)    =    \(2^{6} \cdot 3^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(105.785\)
Root analytic conductor: \(10.2852\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 13248,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
23 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.39907967045005, −15.83819853766549, −15.43765151548754, −15.01496150310549, −14.15578558308561, −13.85219243522250, −13.06185501252217, −12.54573779518517, −11.89176432902059, −11.39457711541294, −10.87141289150156, −10.35410115469433, −9.625481870497654, −8.842812211696589, −8.237074899973337, −7.671439480571715, −7.460034566184015, −6.473203821116557, −5.531651524982126, −5.249027388929914, −4.298462460722993, −3.768390663809094, −2.954739428627474, −2.099468896007230, −1.095271496911977, 0, 1.095271496911977, 2.099468896007230, 2.954739428627474, 3.768390663809094, 4.298462460722993, 5.249027388929914, 5.531651524982126, 6.473203821116557, 7.460034566184015, 7.671439480571715, 8.237074899973337, 8.842812211696589, 9.625481870497654, 10.35410115469433, 10.87141289150156, 11.39457711541294, 11.89176432902059, 12.54573779518517, 13.06185501252217, 13.85219243522250, 14.15578558308561, 15.01496150310549, 15.43765151548754, 15.83819853766549, 16.39907967045005

Graph of the $Z$-function along the critical line