Properties

Label 2-129472-1.1-c1-0-2
Degree $2$
Conductor $129472$
Sign $1$
Analytic cond. $1033.83$
Root an. cond. $32.1533$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 4·5-s + 7-s − 2·9-s − 2·11-s + 4·13-s + 4·15-s − 19-s − 21-s + 2·23-s + 11·25-s + 5·27-s − 9·29-s − 7·31-s + 2·33-s − 4·35-s − 6·37-s − 4·39-s + 10·41-s + 4·43-s + 8·45-s + 7·47-s + 49-s − 9·53-s + 8·55-s + 57-s − 7·59-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.78·5-s + 0.377·7-s − 2/3·9-s − 0.603·11-s + 1.10·13-s + 1.03·15-s − 0.229·19-s − 0.218·21-s + 0.417·23-s + 11/5·25-s + 0.962·27-s − 1.67·29-s − 1.25·31-s + 0.348·33-s − 0.676·35-s − 0.986·37-s − 0.640·39-s + 1.56·41-s + 0.609·43-s + 1.19·45-s + 1.02·47-s + 1/7·49-s − 1.23·53-s + 1.07·55-s + 0.132·57-s − 0.911·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 129472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 129472 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(129472\)    =    \(2^{6} \cdot 7 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(1033.83\)
Root analytic conductor: \(32.1533\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 129472,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4544901328\)
\(L(\frac12)\) \(\approx\) \(0.4544901328\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 - T \)
17 \( 1 \)
good3 \( 1 + T + p T^{2} \) 1.3.b
5 \( 1 + 4 T + p T^{2} \) 1.5.e
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 + 7 T + p T^{2} \) 1.31.h
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 7 T + p T^{2} \) 1.47.ah
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 + 7 T + p T^{2} \) 1.59.h
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + p T^{2} \) 1.73.a
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 - 17 T + p T^{2} \) 1.83.ar
89 \( 1 + 8 T + p T^{2} \) 1.89.i
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.29737861708936, −12.93010360140045, −12.42213573470749, −11.96868365851869, −11.49545476971295, −11.04393094632187, −10.76152775831109, −10.61882578545739, −9.392272314307693, −8.998317919252711, −8.565941112509806, −8.021215678271455, −7.562704638521916, −7.261831512340494, −6.562907259431627, −5.820880322749242, −5.551373330758005, −4.877946476671375, −4.291920316050319, −3.810562509355984, −3.315977669340649, −2.732221788704939, −1.823878076621798, −0.9824366633684156, −0.2546176249464574, 0.2546176249464574, 0.9824366633684156, 1.823878076621798, 2.732221788704939, 3.315977669340649, 3.810562509355984, 4.291920316050319, 4.877946476671375, 5.551373330758005, 5.820880322749242, 6.562907259431627, 7.261831512340494, 7.562704638521916, 8.021215678271455, 8.565941112509806, 8.998317919252711, 9.392272314307693, 10.61882578545739, 10.76152775831109, 11.04393094632187, 11.49545476971295, 11.96868365851869, 12.42213573470749, 12.93010360140045, 13.29737861708936

Graph of the $Z$-function along the critical line