Properties

Label 2-126400-1.1-c1-0-6
Degree $2$
Conductor $126400$
Sign $1$
Analytic cond. $1009.30$
Root an. cond. $31.7696$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 7-s − 2·9-s − 11-s − 4·13-s + 2·17-s − 8·19-s − 21-s + 8·23-s + 5·27-s + 4·29-s − 9·31-s + 33-s + 3·37-s + 4·39-s + 12·43-s − 12·47-s − 6·49-s − 2·51-s − 7·53-s + 8·57-s + 8·61-s − 2·63-s + 10·67-s − 8·69-s − 12·71-s − 2·73-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.377·7-s − 2/3·9-s − 0.301·11-s − 1.10·13-s + 0.485·17-s − 1.83·19-s − 0.218·21-s + 1.66·23-s + 0.962·27-s + 0.742·29-s − 1.61·31-s + 0.174·33-s + 0.493·37-s + 0.640·39-s + 1.82·43-s − 1.75·47-s − 6/7·49-s − 0.280·51-s − 0.961·53-s + 1.05·57-s + 1.02·61-s − 0.251·63-s + 1.22·67-s − 0.963·69-s − 1.42·71-s − 0.234·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 126400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 126400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(126400\)    =    \(2^{6} \cdot 5^{2} \cdot 79\)
Sign: $1$
Analytic conductor: \(1009.30\)
Root analytic conductor: \(31.7696\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 126400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6707498128\)
\(L(\frac12)\) \(\approx\) \(0.6707498128\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
79 \( 1 + T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 + T + p T^{2} \) 1.11.b
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 + 9 T + p T^{2} \) 1.31.j
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 7 T + p T^{2} \) 1.53.h
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 2 T + p T^{2} \) 1.73.c
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.23935133520266, −12.98592389922768, −12.58514595383923, −12.07305114588020, −11.53634689059603, −11.02648071054119, −10.73318545776361, −10.35143719641979, −9.454539578785775, −9.278669383566873, −8.561953117835009, −8.082618703378523, −7.674797841084300, −6.914277526506078, −6.603270670426302, −5.991169047991265, −5.321823694245378, −5.045036248137084, −4.526558348726548, −3.865817293084790, −3.022913083082335, −2.614146400478696, −1.959408218875127, −1.139366305220705, −0.2720844771301744, 0.2720844771301744, 1.139366305220705, 1.959408218875127, 2.614146400478696, 3.022913083082335, 3.865817293084790, 4.526558348726548, 5.045036248137084, 5.321823694245378, 5.991169047991265, 6.603270670426302, 6.914277526506078, 7.674797841084300, 8.082618703378523, 8.561953117835009, 9.278669383566873, 9.454539578785775, 10.35143719641979, 10.73318545776361, 11.02648071054119, 11.53634689059603, 12.07305114588020, 12.58514595383923, 12.98592389922768, 13.23935133520266

Graph of the $Z$-function along the critical line