Properties

Label 2-126126-1.1-c1-0-17
Degree $2$
Conductor $126126$
Sign $1$
Analytic cond. $1007.12$
Root an. cond. $31.7351$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5-s − 8-s + 10-s − 11-s + 13-s + 16-s − 4·17-s + 2·19-s − 20-s + 22-s + 23-s − 4·25-s − 26-s + 9·29-s + 4·31-s − 32-s + 4·34-s − 6·37-s − 2·38-s + 40-s + 41-s + 11·43-s − 44-s − 46-s + 4·50-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.447·5-s − 0.353·8-s + 0.316·10-s − 0.301·11-s + 0.277·13-s + 1/4·16-s − 0.970·17-s + 0.458·19-s − 0.223·20-s + 0.213·22-s + 0.208·23-s − 4/5·25-s − 0.196·26-s + 1.67·29-s + 0.718·31-s − 0.176·32-s + 0.685·34-s − 0.986·37-s − 0.324·38-s + 0.158·40-s + 0.156·41-s + 1.67·43-s − 0.150·44-s − 0.147·46-s + 0.565·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 126126 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 126126 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(126126\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \cdot 13\)
Sign: $1$
Analytic conductor: \(1007.12\)
Root analytic conductor: \(31.7351\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 126126,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.236535340\)
\(L(\frac12)\) \(\approx\) \(1.236535340\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 \)
11 \( 1 + T \)
13 \( 1 - T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - T + p T^{2} \) 1.41.ab
43 \( 1 - 11 T + p T^{2} \) 1.43.al
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 - 3 T + p T^{2} \) 1.67.ad
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 + 9 T + p T^{2} \) 1.73.j
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 8 T + p T^{2} \) 1.89.i
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.48374990233994, −13.10060215967006, −12.26651590939125, −12.09379730045119, −11.55601698616496, −11.03597874415014, −10.54367305946928, −10.22062152329950, −9.584204138140472, −9.058937146796846, −8.599599212664902, −8.200707024461047, −7.655183969861011, −7.117790511227452, −6.740046356657428, −6.026840203785413, −5.663982746984110, −4.822471234309752, −4.359723857553712, −3.785096605044454, −2.979420250805767, −2.597879374737181, −1.849455734622633, −1.080421153146630, −0.4252493609992378, 0.4252493609992378, 1.080421153146630, 1.849455734622633, 2.597879374737181, 2.979420250805767, 3.785096605044454, 4.359723857553712, 4.822471234309752, 5.663982746984110, 6.026840203785413, 6.740046356657428, 7.117790511227452, 7.655183969861011, 8.200707024461047, 8.599599212664902, 9.058937146796846, 9.584204138140472, 10.22062152329950, 10.54367305946928, 11.03597874415014, 11.55601698616496, 12.09379730045119, 12.26651590939125, 13.10060215967006, 13.48374990233994

Graph of the $Z$-function along the critical line