Properties

Label 2-124950-1.1-c1-0-121
Degree $2$
Conductor $124950$
Sign $-1$
Analytic cond. $997.730$
Root an. cond. $31.5868$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s − 8-s + 9-s − 11-s − 12-s − 3·13-s + 16-s − 17-s − 18-s − 4·19-s + 22-s + 4·23-s + 24-s + 3·26-s − 27-s + 8·29-s + 5·31-s − 32-s + 33-s + 34-s + 36-s + 6·37-s + 4·38-s + 3·39-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.301·11-s − 0.288·12-s − 0.832·13-s + 1/4·16-s − 0.242·17-s − 0.235·18-s − 0.917·19-s + 0.213·22-s + 0.834·23-s + 0.204·24-s + 0.588·26-s − 0.192·27-s + 1.48·29-s + 0.898·31-s − 0.176·32-s + 0.174·33-s + 0.171·34-s + 1/6·36-s + 0.986·37-s + 0.648·38-s + 0.480·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 124950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 124950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(124950\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(997.730\)
Root analytic conductor: \(31.5868\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 124950,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 \)
17 \( 1 + T \)
good11 \( 1 + T + p T^{2} \) 1.11.b
13 \( 1 + 3 T + p T^{2} \) 1.13.d
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 + 5 T + p T^{2} \) 1.53.f
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + 12 T + p T^{2} \) 1.61.m
67 \( 1 - 6 T + p T^{2} \) 1.67.ag
71 \( 1 + 9 T + p T^{2} \) 1.71.j
73 \( 1 + p T^{2} \) 1.73.a
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.78472060037066, −13.09726147106387, −12.70334443435947, −12.23788690612854, −11.85896748770796, −11.16023925716495, −10.88372761862090, −10.38267668365176, −9.922179891642253, −9.454013147173896, −8.874132976176967, −8.449074562290564, −7.720222008285446, −7.504153178678259, −6.813108908919515, −6.170864391216403, −6.124836830855383, −5.124907493012431, −4.640993756075946, −4.340048244746603, −3.312520973866007, −2.686016408838151, −2.285554983455673, −1.374890591911795, −0.7506903207213823, 0, 0.7506903207213823, 1.374890591911795, 2.285554983455673, 2.686016408838151, 3.312520973866007, 4.340048244746603, 4.640993756075946, 5.124907493012431, 6.124836830855383, 6.170864391216403, 6.813108908919515, 7.504153178678259, 7.720222008285446, 8.449074562290564, 8.874132976176967, 9.454013147173896, 9.922179891642253, 10.38267668365176, 10.88372761862090, 11.16023925716495, 11.85896748770796, 12.23788690612854, 12.70334443435947, 13.09726147106387, 13.78472060037066

Graph of the $Z$-function along the critical line