Properties

Label 2-116160-1.1-c1-0-13
Degree $2$
Conductor $116160$
Sign $1$
Analytic cond. $927.542$
Root an. cond. $30.4555$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s + 9-s − 2·13-s + 15-s − 2·17-s − 4·19-s + 25-s − 27-s − 2·29-s + 2·37-s + 2·39-s − 2·41-s − 12·43-s − 45-s + 8·47-s − 7·49-s + 2·51-s − 6·53-s + 4·57-s + 12·59-s + 6·61-s + 2·65-s − 4·67-s + 6·73-s − 75-s + 16·79-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s + 1/3·9-s − 0.554·13-s + 0.258·15-s − 0.485·17-s − 0.917·19-s + 1/5·25-s − 0.192·27-s − 0.371·29-s + 0.328·37-s + 0.320·39-s − 0.312·41-s − 1.82·43-s − 0.149·45-s + 1.16·47-s − 49-s + 0.280·51-s − 0.824·53-s + 0.529·57-s + 1.56·59-s + 0.768·61-s + 0.248·65-s − 0.488·67-s + 0.702·73-s − 0.115·75-s + 1.80·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 116160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 116160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(116160\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(927.542\)
Root analytic conductor: \(30.4555\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 116160,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6954037423\)
\(L(\frac12)\) \(\approx\) \(0.6954037423\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
11 \( 1 \)
good7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.38558974447904, −13.12948057558481, −12.58665309417458, −12.08862746568252, −11.70009518733754, −11.14232578857459, −10.83840613720542, −10.16024356937611, −9.851917656594586, −9.162247709820616, −8.677291651152407, −8.109410624294280, −7.668770084386360, −7.009290245164351, −6.604720135327725, −6.163193222186388, −5.443426485110183, −4.851013243159046, −4.588171474854057, −3.744778806346024, −3.432250078691781, −2.403941883913257, −2.040079124264690, −1.115995767525526, −0.2872366322631839, 0.2872366322631839, 1.115995767525526, 2.040079124264690, 2.403941883913257, 3.432250078691781, 3.744778806346024, 4.588171474854057, 4.851013243159046, 5.443426485110183, 6.163193222186388, 6.604720135327725, 7.009290245164351, 7.668770084386360, 8.109410624294280, 8.677291651152407, 9.162247709820616, 9.851917656594586, 10.16024356937611, 10.83840613720542, 11.14232578857459, 11.70009518733754, 12.08862746568252, 12.58665309417458, 13.12948057558481, 13.38558974447904

Graph of the $Z$-function along the critical line