Properties

Label 2-110400-1.1-c1-0-153
Degree $2$
Conductor $110400$
Sign $-1$
Analytic cond. $881.548$
Root an. cond. $29.6908$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 9-s − 2·13-s − 2·17-s − 8·19-s − 23-s + 27-s + 2·29-s + 8·31-s + 2·37-s − 2·39-s + 10·41-s − 8·43-s + 8·47-s − 7·49-s − 2·51-s + 2·53-s − 8·57-s − 4·59-s − 2·61-s − 8·67-s − 69-s + 6·73-s − 8·79-s + 81-s + 16·83-s + 2·87-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/3·9-s − 0.554·13-s − 0.485·17-s − 1.83·19-s − 0.208·23-s + 0.192·27-s + 0.371·29-s + 1.43·31-s + 0.328·37-s − 0.320·39-s + 1.56·41-s − 1.21·43-s + 1.16·47-s − 49-s − 0.280·51-s + 0.274·53-s − 1.05·57-s − 0.520·59-s − 0.256·61-s − 0.977·67-s − 0.120·69-s + 0.702·73-s − 0.900·79-s + 1/9·81-s + 1.75·83-s + 0.214·87-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 110400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 110400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(110400\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(881.548\)
Root analytic conductor: \(29.6908\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 110400,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
23 \( 1 + T \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 8 T + p T^{2} \) 1.19.i
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.89348985831431, −13.38273143458125, −13.01728742898509, −12.42468268341172, −12.11836842389006, −11.43641621026673, −10.94010264307937, −10.32016418943020, −10.11628932336835, −9.392358766110350, −8.880867601817347, −8.574927759291553, −7.844621986618544, −7.647460373373899, −6.831688506141161, −6.294873931589044, −6.099371739524253, −5.028821397816659, −4.646823511755937, −4.156536872877593, −3.567327647091574, −2.716127811765410, −2.402379623614299, −1.766816078807569, −0.8716523651615348, 0, 0.8716523651615348, 1.766816078807569, 2.402379623614299, 2.716127811765410, 3.567327647091574, 4.156536872877593, 4.646823511755937, 5.028821397816659, 6.099371739524253, 6.294873931589044, 6.831688506141161, 7.647460373373899, 7.844621986618544, 8.574927759291553, 8.880867601817347, 9.392358766110350, 10.11628932336835, 10.32016418943020, 10.94010264307937, 11.43641621026673, 12.11836842389006, 12.42468268341172, 13.01728742898509, 13.38273143458125, 13.89348985831431

Graph of the $Z$-function along the critical line