Properties

Label 2-330e2-1.1-c1-0-12
Degree $2$
Conductor $108900$
Sign $1$
Analytic cond. $869.570$
Root an. cond. $29.4884$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·7-s − 4·13-s + 7·17-s + 4·19-s − 9·23-s + 4·29-s + 7·31-s − 2·37-s − 2·41-s − 12·43-s + 9·47-s − 3·49-s − 13·53-s − 8·59-s + 5·61-s − 14·67-s − 8·71-s + 8·73-s − 9·79-s − 8·83-s + 6·89-s + 8·91-s + 14·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  − 0.755·7-s − 1.10·13-s + 1.69·17-s + 0.917·19-s − 1.87·23-s + 0.742·29-s + 1.25·31-s − 0.328·37-s − 0.312·41-s − 1.82·43-s + 1.31·47-s − 3/7·49-s − 1.78·53-s − 1.04·59-s + 0.640·61-s − 1.71·67-s − 0.949·71-s + 0.936·73-s − 1.01·79-s − 0.878·83-s + 0.635·89-s + 0.838·91-s + 1.42·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 108900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 108900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(108900\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(869.570\)
Root analytic conductor: \(29.4884\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 108900,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.170156874\)
\(L(\frac12)\) \(\approx\) \(1.170156874\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 7 T + p T^{2} \) 1.17.ah
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 9 T + p T^{2} \) 1.23.j
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 + 13 T + p T^{2} \) 1.53.n
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 + 9 T + p T^{2} \) 1.79.j
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.77569470998473, −13.21503005046624, −12.49435525559381, −12.21836809864011, −11.83972916771915, −11.49065543798459, −10.37811721713188, −10.17624519155346, −9.885375408105675, −9.408066506596754, −8.744468114813081, −7.989905494227604, −7.793381875084353, −7.249156798579891, −6.513990611682592, −6.166421138104214, −5.548515301414541, −5.006064269436602, −4.469460536021603, −3.744826979474827, −3.042004720552609, −2.905774647220245, −1.892357930067067, −1.271846806406697, −0.3418090711680404, 0.3418090711680404, 1.271846806406697, 1.892357930067067, 2.905774647220245, 3.042004720552609, 3.744826979474827, 4.469460536021603, 5.006064269436602, 5.548515301414541, 6.166421138104214, 6.513990611682592, 7.249156798579891, 7.793381875084353, 7.989905494227604, 8.744468114813081, 9.408066506596754, 9.885375408105675, 10.17624519155346, 10.37811721713188, 11.49065543798459, 11.83972916771915, 12.21836809864011, 12.49435525559381, 13.21503005046624, 13.77569470998473

Graph of the $Z$-function along the critical line