Properties

Label 2-10140-1.1-c1-0-8
Degree $2$
Conductor $10140$
Sign $-1$
Analytic cond. $80.9683$
Root an. cond. $8.99823$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s − 3·7-s + 9-s − 6·11-s − 15-s + 6·17-s + 3·21-s + 2·23-s + 25-s − 27-s + 8·29-s − 3·31-s + 6·33-s − 3·35-s − 6·37-s − 2·41-s + 11·43-s + 45-s − 12·47-s + 2·49-s − 6·51-s − 12·53-s − 6·55-s + 15·61-s − 3·63-s + 5·67-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s − 1.13·7-s + 1/3·9-s − 1.80·11-s − 0.258·15-s + 1.45·17-s + 0.654·21-s + 0.417·23-s + 1/5·25-s − 0.192·27-s + 1.48·29-s − 0.538·31-s + 1.04·33-s − 0.507·35-s − 0.986·37-s − 0.312·41-s + 1.67·43-s + 0.149·45-s − 1.75·47-s + 2/7·49-s − 0.840·51-s − 1.64·53-s − 0.809·55-s + 1.92·61-s − 0.377·63-s + 0.610·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10140 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10140\)    =    \(2^{2} \cdot 3 \cdot 5 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(80.9683\)
Root analytic conductor: \(8.99823\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 10140,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
13 \( 1 \)
good7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 + 6 T + p T^{2} \) 1.11.g
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 11 T + p T^{2} \) 1.43.al
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 15 T + p T^{2} \) 1.61.ap
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 5 T + p T^{2} \) 1.73.af
79 \( 1 + 15 T + p T^{2} \) 1.79.p
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - T + p T^{2} \) 1.97.ab
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.82288430921750, −16.28744608783280, −15.73696257713993, −15.61271775360708, −14.43162806013866, −14.12026757782552, −13.20653910404219, −12.79091351935688, −12.55849111342896, −11.72111695443127, −10.94462175975862, −10.34658584318552, −9.981121012001313, −9.505399203619687, −8.546277484364320, −7.888615915744550, −7.255115862883736, −6.502106577654970, −5.972958525253095, −5.184962891157853, −4.930218923709811, −3.594403126479513, −3.044136682914772, −2.266597817597400, −1.019844258023239, 0, 1.019844258023239, 2.266597817597400, 3.044136682914772, 3.594403126479513, 4.930218923709811, 5.184962891157853, 5.972958525253095, 6.502106577654970, 7.255115862883736, 7.888615915744550, 8.546277484364320, 9.505399203619687, 9.981121012001313, 10.34658584318552, 10.94462175975862, 11.72111695443127, 12.55849111342896, 12.79091351935688, 13.20653910404219, 14.12026757782552, 14.43162806013866, 15.61271775360708, 15.73696257713993, 16.28744608783280, 16.82288430921750

Graph of the $Z$-function along the critical line