Properties

Label 2-101232-1.1-c1-0-0
Degree $2$
Conductor $101232$
Sign $1$
Analytic cond. $808.341$
Root an. cond. $28.4313$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·5-s − 4·7-s − 3·11-s − 4·13-s − 6·17-s − 19-s + 23-s + 4·25-s + 2·31-s − 12·35-s − 37-s + 2·41-s + 4·43-s + 10·47-s + 9·49-s + 3·53-s − 9·55-s + 3·59-s − 5·61-s − 12·65-s + 2·67-s + 9·71-s − 11·73-s + 12·77-s − 10·79-s − 3·83-s − 18·85-s + ⋯
L(s)  = 1  + 1.34·5-s − 1.51·7-s − 0.904·11-s − 1.10·13-s − 1.45·17-s − 0.229·19-s + 0.208·23-s + 4/5·25-s + 0.359·31-s − 2.02·35-s − 0.164·37-s + 0.312·41-s + 0.609·43-s + 1.45·47-s + 9/7·49-s + 0.412·53-s − 1.21·55-s + 0.390·59-s − 0.640·61-s − 1.48·65-s + 0.244·67-s + 1.06·71-s − 1.28·73-s + 1.36·77-s − 1.12·79-s − 0.329·83-s − 1.95·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 101232 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 101232 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(101232\)    =    \(2^{4} \cdot 3^{2} \cdot 19 \cdot 37\)
Sign: $1$
Analytic conductor: \(808.341\)
Root analytic conductor: \(28.4313\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 101232,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6149798384\)
\(L(\frac12)\) \(\approx\) \(0.6149798384\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 + T \)
37 \( 1 + T \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 6 T + p T^{2} \) 1.17.g
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 3 T + p T^{2} \) 1.83.d
89 \( 1 + 13 T + p T^{2} \) 1.89.n
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.56073291296584, −13.27256120100721, −12.91460773222058, −12.40766622129622, −12.01373646519445, −11.07875147694492, −10.70768955105287, −10.14580638567050, −9.845006482382150, −9.366412229648530, −8.967672104973862, −8.425373956082144, −7.560660719594615, −7.099097056176975, −6.592300721652672, −6.192983810319764, −5.554834409105893, −5.241633502877874, −4.418787448233782, −3.944105247359411, −2.920192301614630, −2.543263687321980, −2.297521617301976, −1.304514666410534, −0.2355120743020208, 0.2355120743020208, 1.304514666410534, 2.297521617301976, 2.543263687321980, 2.920192301614630, 3.944105247359411, 4.418787448233782, 5.241633502877874, 5.554834409105893, 6.192983810319764, 6.592300721652672, 7.099097056176975, 7.560660719594615, 8.425373956082144, 8.967672104973862, 9.366412229648530, 9.845006482382150, 10.14580638567050, 10.70768955105287, 11.07875147694492, 12.01373646519445, 12.40766622129622, 12.91460773222058, 13.27256120100721, 13.56073291296584

Graph of the $Z$-function along the critical line