Properties

Label 2-100928-1.1-c1-0-26
Degree $2$
Conductor $100928$
Sign $-1$
Analytic cond. $805.914$
Root an. cond. $28.3886$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 7-s − 2·9-s + 11-s + 4·13-s + 5·17-s − 19-s + 21-s + 8·23-s − 5·25-s + 5·27-s + 3·29-s + 31-s − 33-s + 3·37-s − 4·39-s + 6·41-s + 2·47-s − 6·49-s − 5·51-s + 57-s − 3·59-s − 3·61-s + 2·63-s − 14·67-s − 8·69-s + 4·71-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.377·7-s − 2/3·9-s + 0.301·11-s + 1.10·13-s + 1.21·17-s − 0.229·19-s + 0.218·21-s + 1.66·23-s − 25-s + 0.962·27-s + 0.557·29-s + 0.179·31-s − 0.174·33-s + 0.493·37-s − 0.640·39-s + 0.937·41-s + 0.291·47-s − 6/7·49-s − 0.700·51-s + 0.132·57-s − 0.390·59-s − 0.384·61-s + 0.251·63-s − 1.71·67-s − 0.963·69-s + 0.474·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 100928 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 100928 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(100928\)    =    \(2^{6} \cdot 19 \cdot 83\)
Sign: $-1$
Analytic conductor: \(805.914\)
Root analytic conductor: \(28.3886\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 100928,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
19 \( 1 + T \)
83 \( 1 - T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 - T + p T^{2} \) 1.11.ab
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 5 T + p T^{2} \) 1.17.af
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - T + p T^{2} \) 1.31.ab
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 + 3 T + p T^{2} \) 1.61.d
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 + p T^{2} \) 1.73.a
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
89 \( 1 - 4 T + p T^{2} \) 1.89.ae
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.97186963728059, −13.51616770942826, −12.90460541667296, −12.58379659277643, −11.92629715157079, −11.49254183136180, −11.21048751226003, −10.45572490536204, −10.31428850737177, −9.445003616776111, −9.035576294615776, −8.664533687182076, −7.809546526083625, −7.668769008438544, −6.726104992109563, −6.278570847233905, −5.982311848944969, −5.358378667845802, −4.858035673933638, −4.144647150186273, −3.470647619973426, −3.059944085638470, −2.403222629766752, −1.311493052769368, −0.9577666642213191, 0, 0.9577666642213191, 1.311493052769368, 2.403222629766752, 3.059944085638470, 3.470647619973426, 4.144647150186273, 4.858035673933638, 5.358378667845802, 5.982311848944969, 6.278570847233905, 6.726104992109563, 7.668769008438544, 7.809546526083625, 8.664533687182076, 9.035576294615776, 9.445003616776111, 10.31428850737177, 10.45572490536204, 11.21048751226003, 11.49254183136180, 11.92629715157079, 12.58379659277643, 12.90460541667296, 13.51616770942826, 13.97186963728059

Graph of the $Z$-function along the critical line