Properties

Label 2-100188-1.1-c1-0-6
Degree $2$
Conductor $100188$
Sign $1$
Analytic cond. $800.005$
Root an. cond. $28.2843$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 2·7-s + 2·13-s + 2·17-s + 2·19-s + 23-s − 25-s + 4·29-s + 4·35-s + 2·37-s + 2·43-s − 12·47-s − 3·49-s + 2·53-s − 12·59-s + 14·61-s − 4·65-s + 2·67-s − 6·73-s − 6·79-s + 4·83-s − 4·85-s + 18·89-s − 4·91-s − 4·95-s + 6·97-s + 101-s + ⋯
L(s)  = 1  − 0.894·5-s − 0.755·7-s + 0.554·13-s + 0.485·17-s + 0.458·19-s + 0.208·23-s − 1/5·25-s + 0.742·29-s + 0.676·35-s + 0.328·37-s + 0.304·43-s − 1.75·47-s − 3/7·49-s + 0.274·53-s − 1.56·59-s + 1.79·61-s − 0.496·65-s + 0.244·67-s − 0.702·73-s − 0.675·79-s + 0.439·83-s − 0.433·85-s + 1.90·89-s − 0.419·91-s − 0.410·95-s + 0.609·97-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 100188 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 100188 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(100188\)    =    \(2^{2} \cdot 3^{2} \cdot 11^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(800.005\)
Root analytic conductor: \(28.2843\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 100188,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.427504597\)
\(L(\frac12)\) \(\approx\) \(1.427504597\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
23 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.64764856502184, −13.24295850133248, −12.78511443377657, −12.24945503862102, −11.78124390393077, −11.40934915682070, −10.86264109854120, −10.30062346924461, −9.742946899832575, −9.416520324024332, −8.688953142785737, −8.225018280419849, −7.794280707484463, −7.234775836001162, −6.687455518813049, −6.179309768491683, −5.666910309697602, −4.918529120626628, −4.443517870880211, −3.701446617551816, −3.346075683500021, −2.851857167393124, −1.948421840752136, −1.118787608611294, −0.4209570795760576, 0.4209570795760576, 1.118787608611294, 1.948421840752136, 2.851857167393124, 3.346075683500021, 3.701446617551816, 4.443517870880211, 4.918529120626628, 5.666910309697602, 6.179309768491683, 6.687455518813049, 7.234775836001162, 7.794280707484463, 8.225018280419849, 8.688953142785737, 9.416520324024332, 9.742946899832575, 10.30062346924461, 10.86264109854120, 11.40934915682070, 11.78124390393077, 12.24945503862102, 12.78511443377657, 13.24295850133248, 13.64764856502184

Graph of the $Z$-function along the critical line