L(s) = 1 | − 2·2-s − 3-s + 2·4-s + 2·6-s − 2·7-s + 9-s + 2·11-s − 2·12-s − 13-s + 4·14-s − 4·16-s − 2·18-s + 2·21-s − 4·22-s + 25-s + 2·26-s − 27-s − 4·28-s − 12·29-s + 8·32-s − 2·33-s + 2·36-s + 39-s − 4·42-s + 4·44-s + 4·48-s − 11·49-s + ⋯ |
L(s) = 1 | − 1.41·2-s − 0.577·3-s + 4-s + 0.816·6-s − 0.755·7-s + 1/3·9-s + 0.603·11-s − 0.577·12-s − 0.277·13-s + 1.06·14-s − 16-s − 0.471·18-s + 0.436·21-s − 0.852·22-s + 1/5·25-s + 0.392·26-s − 0.192·27-s − 0.755·28-s − 2.22·29-s + 1.41·32-s − 0.348·33-s + 1/3·36-s + 0.160·39-s − 0.617·42-s + 0.603·44-s + 0.577·48-s − 1.57·49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.3641924696\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3641924696\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.597535703688339175884596876897, −7.941131356787931938528355545742, −7.49859374028433657269994503906, −7.03873207586578073963834410385, −6.84952219408898290749391909270, −6.18903728282673169821278407403, −5.85547369369790703747762555916, −5.21278839975729832760233125210, −4.69523767414760788827716693787, −4.02973036183346233377902232276, −3.57586812602217524487867035838, −2.81899966858257210535859126488, −1.99136293779289589858748837152, −1.43699992124098362387064357826, −0.41161964303919691304925155264,
0.41161964303919691304925155264, 1.43699992124098362387064357826, 1.99136293779289589858748837152, 2.81899966858257210535859126488, 3.57586812602217524487867035838, 4.02973036183346233377902232276, 4.69523767414760788827716693787, 5.21278839975729832760233125210, 5.85547369369790703747762555916, 6.18903728282673169821278407403, 6.84952219408898290749391909270, 7.03873207586578073963834410385, 7.49859374028433657269994503906, 7.941131356787931938528355545742, 8.597535703688339175884596876897