L(s) = 1 | − 2-s + 4-s − 7-s − 8-s − 9-s + 14-s + 16-s − 2·17-s + 18-s − 2·23-s + 4·25-s − 28-s − 8·31-s − 32-s + 2·34-s − 36-s + 12·41-s + 2·46-s + 2·47-s − 49-s − 4·50-s + 56-s + 8·62-s + 63-s + 64-s − 2·68-s + 16·71-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s − 0.377·7-s − 0.353·8-s − 1/3·9-s + 0.267·14-s + 1/4·16-s − 0.485·17-s + 0.235·18-s − 0.417·23-s + 4/5·25-s − 0.188·28-s − 1.43·31-s − 0.176·32-s + 0.342·34-s − 1/6·36-s + 1.87·41-s + 0.294·46-s + 0.291·47-s − 1/7·49-s − 0.565·50-s + 0.133·56-s + 1.01·62-s + 0.125·63-s + 1/8·64-s − 0.242·68-s + 1.89·71-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 194688 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 194688 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9296656570\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9296656570\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.181628232479985218068828780717, −8.821901675129735291499854865548, −8.097331287192322077548750579381, −7.80805304749904528104943026678, −7.16130358233683164438410451732, −6.88184270128025031714617742743, −6.08161155056658086746295730712, −5.95169227291797674635478009990, −5.16931197408396163152815510978, −4.58593645901433106364879790705, −3.83450269987269120824827831031, −3.27909177548567461258987474307, −2.51636032705536819884191917959, −1.89949973736680895786973015982, −0.68021622465261953620066118928,
0.68021622465261953620066118928, 1.89949973736680895786973015982, 2.51636032705536819884191917959, 3.27909177548567461258987474307, 3.83450269987269120824827831031, 4.58593645901433106364879790705, 5.16931197408396163152815510978, 5.95169227291797674635478009990, 6.08161155056658086746295730712, 6.88184270128025031714617742743, 7.16130358233683164438410451732, 7.80805304749904528104943026678, 8.097331287192322077548750579381, 8.821901675129735291499854865548, 9.181628232479985218068828780717