| L(s) = 1 | + 2-s + 4·3-s + 4-s + 4·6-s + 8-s + 6·9-s + 4·12-s + 16-s + 6·18-s + 4·24-s − 25-s − 4·27-s + 12·29-s + 32-s + 6·36-s + 18·41-s + 6·47-s + 4·48-s − 49-s − 50-s − 4·54-s + 12·58-s − 12·59-s + 8·61-s + 64-s + 2·67-s + 6·72-s + ⋯ |
| L(s) = 1 | + 0.707·2-s + 2.30·3-s + 1/2·4-s + 1.63·6-s + 0.353·8-s + 2·9-s + 1.15·12-s + 1/4·16-s + 1.41·18-s + 0.816·24-s − 1/5·25-s − 0.769·27-s + 2.22·29-s + 0.176·32-s + 36-s + 2.81·41-s + 0.875·47-s + 0.577·48-s − 1/7·49-s − 0.141·50-s − 0.544·54-s + 1.57·58-s − 1.56·59-s + 1.02·61-s + 1/8·64-s + 0.244·67-s + 0.707·72-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 464648 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 464648 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(6.767012065\) |
| \(L(\frac12)\) |
\(\approx\) |
\(6.767012065\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.548113480210614022368436402664, −8.015340489693476527030671624522, −7.80980092161500433265759728024, −7.46311743902618040611535758833, −6.69725166545105596985166667052, −6.36749988950318584506075574390, −5.69691822193763031623385487664, −5.24756841906645773194987052893, −4.37649366294576116971858953700, −4.15816476330247363110493063544, −3.52069852969482957770985598719, −2.99173049970091757881156332247, −2.53192047695215617541765365166, −2.26539493113472070506154574566, −1.19186899166079723193862105222,
1.19186899166079723193862105222, 2.26539493113472070506154574566, 2.53192047695215617541765365166, 2.99173049970091757881156332247, 3.52069852969482957770985598719, 4.15816476330247363110493063544, 4.37649366294576116971858953700, 5.24756841906645773194987052893, 5.69691822193763031623385487664, 6.36749988950318584506075574390, 6.69725166545105596985166667052, 7.46311743902618040611535758833, 7.80980092161500433265759728024, 8.015340489693476527030671624522, 8.548113480210614022368436402664