L(s) = 1 | − 3-s + 9-s − 7·11-s + 7·17-s + 13·19-s + 6·25-s − 27-s + 7·33-s − 6·41-s + 17·43-s − 5·49-s − 7·51-s − 13·57-s − 13·59-s − 11·67-s − 7·73-s − 6·75-s + 81-s − 11·83-s + 12·89-s + 16·97-s − 7·99-s − 21·107-s + 18·113-s + 17·121-s + 6·123-s + 127-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1/3·9-s − 2.11·11-s + 1.69·17-s + 2.98·19-s + 6/5·25-s − 0.192·27-s + 1.21·33-s − 0.937·41-s + 2.59·43-s − 5/7·49-s − 0.980·51-s − 1.72·57-s − 1.69·59-s − 1.34·67-s − 0.819·73-s − 0.692·75-s + 1/9·81-s − 1.20·83-s + 1.27·89-s + 1.62·97-s − 0.703·99-s − 2.03·107-s + 1.69·113-s + 1.54·121-s + 0.541·123-s + 0.0887·127-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.446248043\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.446248043\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.689469098016838617603663115960, −7.980967822814334950460501615076, −7.70028465500369463432694640124, −7.36667224515467056263681932491, −7.12756647082018857777826798579, −6.09250801146793651926355859566, −5.79229517863849518880882057975, −5.33838938220385141983366846937, −5.00828683194109319487367368965, −4.57325676586049821824746001737, −3.53788677262904603844826991051, −3.00648522025045462679203043425, −2.78233382743057856226979304936, −1.50680724926070052066489735521, −0.74842540777724196576532462686,
0.74842540777724196576532462686, 1.50680724926070052066489735521, 2.78233382743057856226979304936, 3.00648522025045462679203043425, 3.53788677262904603844826991051, 4.57325676586049821824746001737, 5.00828683194109319487367368965, 5.33838938220385141983366846937, 5.79229517863849518880882057975, 6.09250801146793651926355859566, 7.12756647082018857777826798579, 7.36667224515467056263681932491, 7.70028465500369463432694640124, 7.980967822814334950460501615076, 8.689469098016838617603663115960