| L(s) = 1 | − 2·11-s − 6·19-s + 4·25-s + 8·41-s + 2·43-s − 12·49-s + 8·59-s − 20·67-s − 16·73-s + 16·83-s + 14·89-s + 8·97-s − 16·107-s + 14·113-s + 3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 16·169-s + 173-s + 179-s + ⋯ |
| L(s) = 1 | − 0.603·11-s − 1.37·19-s + 4/5·25-s + 1.24·41-s + 0.304·43-s − 1.71·49-s + 1.04·59-s − 2.44·67-s − 1.87·73-s + 1.75·83-s + 1.48·89-s + 0.812·97-s − 1.54·107-s + 1.31·113-s + 3/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.23·169-s + 0.0760·173-s + 0.0747·179-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2509056 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2509056 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.40695915479543820062330332306, −7.08227321668560425260587693841, −6.53989413744638658993708311811, −6.15698692100555494138475391574, −5.85868782808563230942383253464, −5.27749228664637173942242287885, −4.76427801847053228922208112018, −4.46195367601115603381843732857, −4.01525660380416543815215920790, −3.27984240827439812578270523146, −2.94990683722156260057326279560, −2.28768351638594252541192101144, −1.82993020077928243366348330483, −0.950317352835481520599939452040, 0,
0.950317352835481520599939452040, 1.82993020077928243366348330483, 2.28768351638594252541192101144, 2.94990683722156260057326279560, 3.27984240827439812578270523146, 4.01525660380416543815215920790, 4.46195367601115603381843732857, 4.76427801847053228922208112018, 5.27749228664637173942242287885, 5.85868782808563230942383253464, 6.15698692100555494138475391574, 6.53989413744638658993708311811, 7.08227321668560425260587693841, 7.40695915479543820062330332306