| L(s) = 1 | + 2-s + 3-s − 4-s + 6-s − 3·8-s − 2·9-s − 2·11-s − 12-s − 16-s − 7·17-s − 2·18-s − 3·19-s − 2·22-s − 3·24-s − 2·25-s − 5·27-s + 5·32-s − 2·33-s − 7·34-s + 2·36-s − 3·38-s + 9·41-s − 13·43-s + 2·44-s − 48-s − 12·49-s − 2·50-s + ⋯ |
| L(s) = 1 | + 0.707·2-s + 0.577·3-s − 1/2·4-s + 0.408·6-s − 1.06·8-s − 2/3·9-s − 0.603·11-s − 0.288·12-s − 1/4·16-s − 1.69·17-s − 0.471·18-s − 0.688·19-s − 0.426·22-s − 0.612·24-s − 2/5·25-s − 0.962·27-s + 0.883·32-s − 0.348·33-s − 1.20·34-s + 1/3·36-s − 0.486·38-s + 1.40·41-s − 1.98·43-s + 0.301·44-s − 0.144·48-s − 1.71·49-s − 0.282·50-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 69696 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 69696 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.608819087779611212222544944177, −8.911016915139651177261520974791, −8.686693585152316872360977257552, −8.141806743752138935353208554587, −7.75975577794045985195144717441, −6.84729454041940662816327647768, −6.36199530692318522192293276709, −5.89949320206501939586597679095, −5.10632291865799752593737816190, −4.77111876658569080820894696581, −4.02827327581752341264840142476, −3.47502779919987581669338220749, −2.69772410444506472373161239464, −2.09433173010221596933601076381, 0,
2.09433173010221596933601076381, 2.69772410444506472373161239464, 3.47502779919987581669338220749, 4.02827327581752341264840142476, 4.77111876658569080820894696581, 5.10632291865799752593737816190, 5.89949320206501939586597679095, 6.36199530692318522192293276709, 6.84729454041940662816327647768, 7.75975577794045985195144717441, 8.141806743752138935353208554587, 8.686693585152316872360977257552, 8.911016915139651177261520974791, 9.608819087779611212222544944177