L(s) = 1 | − 3-s − 4·7-s + 9-s − 4·13-s + 4·21-s + 2·25-s − 27-s + 12·31-s + 4·39-s + 2·49-s − 20·61-s − 4·63-s − 4·67-s − 12·73-s − 2·75-s − 8·79-s + 81-s + 16·91-s − 12·93-s + 28·97-s − 28·109-s − 4·117-s + 14·121-s + 127-s + 131-s + 137-s + 139-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 1.51·7-s + 1/3·9-s − 1.10·13-s + 0.872·21-s + 2/5·25-s − 0.192·27-s + 2.15·31-s + 0.640·39-s + 2/7·49-s − 2.56·61-s − 0.503·63-s − 0.488·67-s − 1.40·73-s − 0.230·75-s − 0.900·79-s + 1/9·81-s + 1.67·91-s − 1.24·93-s + 2.84·97-s − 2.68·109-s − 0.369·117-s + 1.27·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 623808 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 623808 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.7301219763\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7301219763\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.332827498282832737739712254040, −7.927678245907970024983186163171, −7.22520814590044657103192726987, −7.13745162637463786490563907108, −6.44241646790166109966282863223, −6.18312063456974917729884758292, −5.82873054307586127933097371351, −5.08355466714749303651769512594, −4.60554725500317971871382121397, −4.31999733292339050476475376099, −3.40149734621719752645486836365, −2.99239433136804527003910004770, −2.52654563932471743750083244413, −1.51703106423776465772975343983, −0.44858401288340263293785916832,
0.44858401288340263293785916832, 1.51703106423776465772975343983, 2.52654563932471743750083244413, 2.99239433136804527003910004770, 3.40149734621719752645486836365, 4.31999733292339050476475376099, 4.60554725500317971871382121397, 5.08355466714749303651769512594, 5.82873054307586127933097371351, 6.18312063456974917729884758292, 6.44241646790166109966282863223, 7.13745162637463786490563907108, 7.22520814590044657103192726987, 7.927678245907970024983186163171, 8.332827498282832737739712254040