| L(s) = 1 | + 3-s − 4-s + 9-s − 12-s + 6·13-s + 16-s + 12·19-s − 2·25-s + 27-s − 4·31-s − 36-s − 8·37-s + 6·39-s + 4·43-s + 48-s − 6·52-s + 12·57-s + 10·61-s − 64-s + 4·67-s + 2·73-s − 2·75-s − 12·76-s − 8·79-s + 81-s − 4·93-s − 14·97-s + ⋯ |
| L(s) = 1 | + 0.577·3-s − 1/2·4-s + 1/3·9-s − 0.288·12-s + 1.66·13-s + 1/4·16-s + 2.75·19-s − 2/5·25-s + 0.192·27-s − 0.718·31-s − 1/6·36-s − 1.31·37-s + 0.960·39-s + 0.609·43-s + 0.144·48-s − 0.832·52-s + 1.58·57-s + 1.28·61-s − 1/8·64-s + 0.488·67-s + 0.234·73-s − 0.230·75-s − 1.37·76-s − 0.900·79-s + 1/9·81-s − 0.414·93-s − 1.42·97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 259308 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 259308 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.266209564\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.266209564\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.814921481318144229906760633094, −8.594949072848139512290444008011, −8.045451793964213293582863010431, −7.50830134670769843729117769646, −7.22891664623198580869388782053, −6.58418622739578159912508579609, −5.95634878468840258125794611097, −5.39281692481958639495063470626, −5.18278653808789891360302340857, −4.29176289442390821036698541598, −3.61277740438840229681447723540, −3.49618065958962322963341484542, −2.72518744743844417971804520987, −1.66749032540359766610848917641, −0.988439049029826398924798149053,
0.988439049029826398924798149053, 1.66749032540359766610848917641, 2.72518744743844417971804520987, 3.49618065958962322963341484542, 3.61277740438840229681447723540, 4.29176289442390821036698541598, 5.18278653808789891360302340857, 5.39281692481958639495063470626, 5.95634878468840258125794611097, 6.58418622739578159912508579609, 7.22891664623198580869388782053, 7.50830134670769843729117769646, 8.045451793964213293582863010431, 8.594949072848139512290444008011, 8.814921481318144229906760633094