L(s) = 1 | − 4-s + 2·5-s + 16-s − 2·20-s − 8·23-s − 6·25-s − 4·31-s − 16·37-s + 12·47-s − 4·49-s − 2·53-s + 8·59-s − 64-s + 12·67-s − 4·71-s + 2·80-s − 14·89-s + 8·92-s − 20·97-s + 6·100-s + 8·103-s − 10·113-s − 16·115-s + 4·124-s − 22·125-s + 127-s + 131-s + ⋯ |
L(s) = 1 | − 1/2·4-s + 0.894·5-s + 1/4·16-s − 0.447·20-s − 1.66·23-s − 6/5·25-s − 0.718·31-s − 2.63·37-s + 1.75·47-s − 4/7·49-s − 0.274·53-s + 1.04·59-s − 1/8·64-s + 1.46·67-s − 0.474·71-s + 0.223·80-s − 1.48·89-s + 0.834·92-s − 2.03·97-s + 3/5·100-s + 0.788·103-s − 0.940·113-s − 1.49·115-s + 0.359·124-s − 1.96·125-s + 0.0887·127-s + 0.0873·131-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4743684 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4743684 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.183114763\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.183114763\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.25880401193670853968949983042, −6.96421707904922046460959527427, −6.50874095262334639204969871055, −5.97304185807736089718201740444, −5.67279459702140560643133665203, −5.39526573017630313768557396652, −5.01952518168687158823604387423, −4.29739132372177016922105444504, −3.90092568754038926515015500394, −3.70018394445048847314239593179, −2.97610663533230995764882213018, −2.32131094825811409526589663339, −1.88046497446053683914396307779, −1.48669786726241911306163497192, −0.36908303254872293574197186979,
0.36908303254872293574197186979, 1.48669786726241911306163497192, 1.88046497446053683914396307779, 2.32131094825811409526589663339, 2.97610663533230995764882213018, 3.70018394445048847314239593179, 3.90092568754038926515015500394, 4.29739132372177016922105444504, 5.01952518168687158823604387423, 5.39526573017630313768557396652, 5.67279459702140560643133665203, 5.97304185807736089718201740444, 6.50874095262334639204969871055, 6.96421707904922046460959527427, 7.25880401193670853968949983042