L(s) = 1 | + 4·2-s + 10·4-s + 20·8-s + 4·11-s + 35·16-s + 16·22-s + 8·23-s − 4·25-s + 16·31-s + 56·32-s + 8·37-s + 8·43-s + 40·44-s + 32·46-s − 16·47-s − 16·50-s − 8·53-s − 32·59-s + 16·61-s + 64·62-s + 84·64-s + 16·67-s + 32·74-s + 16·79-s + 32·86-s + 80·88-s − 16·89-s + ⋯ |
L(s) = 1 | + 2.82·2-s + 5·4-s + 7.07·8-s + 1.20·11-s + 35/4·16-s + 3.41·22-s + 1.66·23-s − 4/5·25-s + 2.87·31-s + 9.89·32-s + 1.31·37-s + 1.21·43-s + 6.03·44-s + 4.71·46-s − 2.33·47-s − 2.26·50-s − 1.09·53-s − 4.16·59-s + 2.04·61-s + 8.12·62-s + 21/2·64-s + 1.95·67-s + 3.71·74-s + 1.80·79-s + 3.45·86-s + 8.52·88-s − 1.69·89-s + ⋯ |
Λ(s)=(=((24⋅38⋅78⋅114)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((24⋅38⋅78⋅114)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
24⋅38⋅78⋅114
|
Sign: |
1
|
Analytic conductor: |
3.60208×107 |
Root analytic conductor: |
8.80175 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 24⋅38⋅78⋅114, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
109.6123430 |
L(21) |
≈ |
109.6123430 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1−T)4 |
| 3 | | 1 |
| 7 | | 1 |
| 11 | C1 | (1−T)4 |
good | 5 | C22≀C2 | 1+4T2+46T4+4p2T6+p4T8 |
| 13 | C2≀C2≀C2 | 1+16T2−32T3+242T4−32pT5+16p2T6+p4T8 |
| 17 | C2≀C2≀C2 | 1+36T2−32T3+638T4−32pT5+36p2T6+p4T8 |
| 19 | C2≀C2≀C2 | 1+40T2+80T3+794T4+80pT5+40p2T6+p4T8 |
| 23 | C2≀C2≀C2 | 1−8T+36T2+56T3−570T4+56pT5+36p2T6−8p3T7+p4T8 |
| 29 | C22 | (1+50T2+p2T4)2 |
| 31 | C2≀C2≀C2 | 1−16T+200T2−1568T3+10378T4−1568pT5+200p2T6−16p3T7+p4T8 |
| 37 | C2≀C2≀C2 | 1−8T+76T2−408T3+2486T4−408pT5+76p2T6−8p3T7+p4T8 |
| 41 | C2≀C2≀C2 | 1+132T2+32T3+7454T4+32pT5+132p2T6+p4T8 |
| 43 | C2≀C2≀C2 | 1−8T+116T2−424T3+5110T4−424pT5+116p2T6−8p3T7+p4T8 |
| 47 | C2≀C2≀C2 | 1+16T+248T2+2304T3+18890T4+2304pT5+248p2T6+16p3T7+p4T8 |
| 53 | C2≀C2≀C2 | 1+8T+140T2+1048T3+9334T4+1048pT5+140p2T6+8p3T7+p4T8 |
| 59 | D4 | (1+16T+174T2+16pT3+p2T4)2 |
| 61 | C2≀C2≀C2 | 1−16T+304T2−2864T3+29362T4−2864pT5+304p2T6−16p3T7+p4T8 |
| 67 | C2≀C2≀C2 | 1−16T+124T2−1104T3+11510T4−1104pT5+124p2T6−16p3T7+p4T8 |
| 71 | C2≀C2≀C2 | 1+140T2+256T3+12422T4+256pT5+140p2T6+p4T8 |
| 73 | C2≀C2≀C2 | 1+116T2−448T3+6462T4−448pT5+116p2T6+p4T8 |
| 79 | C2≀C2≀C2 | 1−16T+236T2−2448T3+24582T4−2448pT5+236p2T6−16p3T7+p4T8 |
| 83 | C2≀C2≀C2 | 1+280T2+48T3+32794T4+48pT5+280p2T6+p4T8 |
| 89 | C2≀C2≀C2 | 1+16T+160T2+1904T3+24642T4+1904pT5+160p2T6+16p3T7+p4T8 |
| 97 | C2≀C2≀C2 | 1+16T+352T2+3984T3+51458T4+3984pT5+352p2T6+16p3T7+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−5.48552228788439949160136406502, −5.24148545148005391033831629515, −4.94508857249820285055012393814, −4.70234835600549987876508252077, −4.62522315205475673158084260645, −4.45145323258622128395809210767, −4.31045226840597124346438033659, −4.17025833486356583580176413556, −4.04060077385134389081472125588, −3.87970392220113667890541132211, −3.41278598763777026428041312173, −3.33292651936476729224546006944, −3.23325929674411569881889109414, −2.97486351769955746842570513503, −2.80704125945089637808992115212, −2.73387894166343282327866351614, −2.59993280436734521194587103711, −2.00334853676016076889840769628, −1.90018564425422211803507168312, −1.83309377357171726648245547131, −1.56558271460816864309062141549, −1.25051474787283699224361739118, −0.925643581893000526428842730780, −0.59569537409131425080546109122, −0.59201217388398950288287038429,
0.59201217388398950288287038429, 0.59569537409131425080546109122, 0.925643581893000526428842730780, 1.25051474787283699224361739118, 1.56558271460816864309062141549, 1.83309377357171726648245547131, 1.90018564425422211803507168312, 2.00334853676016076889840769628, 2.59993280436734521194587103711, 2.73387894166343282327866351614, 2.80704125945089637808992115212, 2.97486351769955746842570513503, 3.23325929674411569881889109414, 3.33292651936476729224546006944, 3.41278598763777026428041312173, 3.87970392220113667890541132211, 4.04060077385134389081472125588, 4.17025833486356583580176413556, 4.31045226840597124346438033659, 4.45145323258622128395809210767, 4.62522315205475673158084260645, 4.70234835600549987876508252077, 4.94508857249820285055012393814, 5.24148545148005391033831629515, 5.48552228788439949160136406502