L(s) = 1 | + 2-s + 3·3-s − 4-s + 3·6-s + 4·7-s + 2·8-s − 9-s − 2·11-s − 3·12-s + 7·13-s + 4·14-s + 3·16-s + 17-s − 18-s + 12·21-s − 2·22-s − 2·23-s + 6·24-s + 7·26-s − 11·27-s − 4·28-s + 29-s − 2·32-s − 6·33-s + 34-s + 36-s − 2·37-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1.73·3-s − 1/2·4-s + 1.22·6-s + 1.51·7-s + 0.707·8-s − 1/3·9-s − 0.603·11-s − 0.866·12-s + 1.94·13-s + 1.06·14-s + 3/4·16-s + 0.242·17-s − 0.235·18-s + 2.61·21-s − 0.426·22-s − 0.417·23-s + 1.22·24-s + 1.37·26-s − 2.11·27-s − 0.755·28-s + 0.185·29-s − 0.353·32-s − 1.04·33-s + 0.171·34-s + 1/6·36-s − 0.328·37-s + ⋯ |
Λ(s)=(=((58⋅198)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((58⋅198)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
58⋅198
|
Sign: |
1
|
Analytic conductor: |
2.69710×107 |
Root analytic conductor: |
8.48910 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 58⋅198, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
19.39647906 |
L(21) |
≈ |
19.39647906 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 5 | | 1 |
| 19 | | 1 |
good | 2 | C2≀S4 | 1−T+pT2−5T3+3pT4−5pT5+p3T6−p3T7+p4T8 |
| 3 | C2≀S4 | 1−pT+10T2−22T3+44T4−22pT5+10p2T6−p4T7+p4T8 |
| 7 | C2≀S4 | 1−4T+27T2−69T3+272T4−69pT5+27p2T6−4p3T7+p4T8 |
| 11 | C2≀S4 | 1+2T+19T2+47T3+179T4+47pT5+19p2T6+2p3T7+p4T8 |
| 13 | C2≀S4 | 1−7T+59T2−250T3+1180T4−250pT5+59p2T6−7p3T7+p4T8 |
| 17 | C2≀S4 | 1−T+38T2−4pT3+822T4−4p2T5+38p2T6−p3T7+p4T8 |
| 23 | C2≀S4 | 1+2T+75T2+145T3+2398T4+145pT5+75p2T6+2p3T7+p4T8 |
| 29 | C2≀S4 | 1−T+53T2−281T3+1251T4−281pT5+53p2T6−p3T7+p4T8 |
| 31 | C2≀S4 | 1+57T2+5T3+2675T4+5pT5+57p2T6+p4T8 |
| 37 | C2≀S4 | 1+2T+117T2+99T3+5802T4+99pT5+117p2T6+2p3T7+p4T8 |
| 41 | C2≀S4 | 1−8T+77T2−13T3+714T4−13pT5+77p2T6−8p3T7+p4T8 |
| 43 | C2≀S4 | 1+T+74T2−68T3+3460T4−68pT5+74p2T6+p3T7+p4T8 |
| 47 | C2≀S4 | 1−12T+133T2−763T3+5768T4−763pT5+133p2T6−12p3T7+p4T8 |
| 53 | C2≀S4 | 1+5T+126T2+568T3+7684T4+568pT5+126p2T6+5p3T7+p4T8 |
| 59 | C2≀S4 | 1−5T+111T2−385T3+8011T4−385pT5+111p2T6−5p3T7+p4T8 |
| 61 | C2≀S4 | 1+114T2+88T3+9515T4+88pT5+114p2T6+p4T8 |
| 67 | C2≀S4 | 1−4T+232T2−828T3+22174T4−828pT5+232p2T6−4p3T7+p4T8 |
| 71 | C2≀S4 | 1+20T+375T2+4165T3+42925T4+4165pT5+375p2T6+20p3T7+p4T8 |
| 73 | C2≀S4 | 1−20T+387T2−57pT3+44118T4−57p2T5+387p2T6−20p3T7+p4T8 |
| 79 | C2≀S4 | 1+17T+388T2+4009T3+48638T4+4009pT5+388p2T6+17p3T7+p4T8 |
| 83 | C2≀S4 | 1+T+270T2+194T3+31408T4+194pT5+270p2T6+p3T7+p4T8 |
| 89 | C2≀S4 | 1+11T+266T2+1549T3+27690T4+1549pT5+266p2T6+11p3T7+p4T8 |
| 97 | C2≀S4 | 1−T+122T2−1096T3+12292T4−1096pT5+122p2T6−p3T7+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−5.49619519517840036477797165948, −5.22647917266468075162048015474, −5.12226906379260178962265908387, −4.79646293763180028201366383522, −4.56226506936702915316399510193, −4.42633147690899610238170169119, −4.29229782423517606501374844596, −4.22016515258556046400663224144, −4.01865613232690361214707742783, −3.60962161464734653995688031979, −3.56275660414593274498909694785, −3.43748432181038534560541903929, −3.22755732048517901531965320170, −2.98549848272529657281961996394, −2.68683150592785329526508798278, −2.53586442675143376565979766784, −2.39842534605707709598620779330, −2.31109042727214224982455867084, −1.86559124902586477304134607381, −1.56755634933443402349990924665, −1.41033245981883767143394211320, −1.37072949960239552813855742296, −1.03175658801345090660419141278, −0.43993708233029008854818624015, −0.42699641486266994228717594978,
0.42699641486266994228717594978, 0.43993708233029008854818624015, 1.03175658801345090660419141278, 1.37072949960239552813855742296, 1.41033245981883767143394211320, 1.56755634933443402349990924665, 1.86559124902586477304134607381, 2.31109042727214224982455867084, 2.39842534605707709598620779330, 2.53586442675143376565979766784, 2.68683150592785329526508798278, 2.98549848272529657281961996394, 3.22755732048517901531965320170, 3.43748432181038534560541903929, 3.56275660414593274498909694785, 3.60962161464734653995688031979, 4.01865613232690361214707742783, 4.22016515258556046400663224144, 4.29229782423517606501374844596, 4.42633147690899610238170169119, 4.56226506936702915316399510193, 4.79646293763180028201366383522, 5.12226906379260178962265908387, 5.22647917266468075162048015474, 5.49619519517840036477797165948